
THÈSE

Pour obtenir le diplôme de doctorat
Spécialité INFORMATIQUE

Préparée au sein de l'Université de Caen Normandie

Jeux à infοrmatiοn incοmplète : cοmplexité, algοrithmique,
raisοnnement.

Présentée et soutenue par
JUNKANG LI

Thèse soutenue le 21/12/2023
devant le jury composé de :

M. OLIVIER SPANJAARD Maître de conférences HDR - UNIVERSITE PARIS 4 PARIS-
SORBONNE Rapporteur du jury

M. NATHAN STURTEVANT Professeur - University of Alberta Rapporteur du jury
M. TRISTAN CAZENAVE Professeur des universités - UNIVERSITE PARIS 9 Membre du jury
M. VINCENT THOMAS Maître de conférences - Université de Lorraine Membre du jury
MME VERONIQUE VENTOS Docteur - NUKKAI Membre du jury

M. CATALIN DIMA Professeur des universités - UNIVERSITE MARNE LA VALLEE
UNIV PARIS EST MARNE LA VALLEE Président du jury

M. BRUNO ZANUTTINI Professeur des universités - Université de Caen Normandie Directeur de thèse

Thèse dirigée par BRUNO ZANUTTINI (GREYC ALGORITHMIQUE)

Games with incomplete information:

complexity, algorithmics, reasoning

A study inspired by the game of Bridge

LI Junkang

Advisors: Bruno Zanuttini, Véronique Ventos

ii

Dedication

LI Danlin,

uxori deliciisque carissimis meis,

hoc opus dedicandum est.

Nisi eius amore sustentus essem,
hoc perficere non potuissem.

iii

iv

Contents

I Introduction and background 1

1 Introduction 3

2 Related work 5

2.1 Decision-making . 5

2.2 Game theory . 7

2.2.1 Solution concepts for games 7

2.2.2 Team games . 9

2.2.3 Games with public actions 9

2.3 Computational complexity . 10

2.3.1 Complexity of games . 10

2.3.2 Complexity of other models for decision-making 11

2.4 Search algorithms for games . 11

2.4.1 Games with incomplete information 12

2.4.2 Games with public actions 12

2.5 Opponent models . 13

3 Background on game theory 15

3.1 Games and strategies . 15

3.1.1 Extensive-form games . 15

3.1.2 Strategies and outcomes . 19

3.1.3 Games of chance . 22

3.1.4 The solution concept of maxmin 24

3.2 Information in EFGs . 25

3.2.1 Perfect recall . 25

3.2.2 Multi-agent perfect recall . 28

II Contributions 31

4 Complexity of pure maxmin in extensive-form games 33

4.1 Introduction . 33

4.2 Complexity of EFGs . 34

4.2.1 Summary of results . 35

4.2.2 EFG of no chance . 36

4.2.3 EFGs of chance . 39

4.3 Complexity of compactly represented games 44

4.3.1 Compact representations of games 44

v

vi CONTENTS

4.3.2 Summary of results . 49

4.3.3 Membership results . 49

4.3.4 Hardness results . 50

4.4 Complexity against opponent models 53

4.4.1 Summary of results . 54

4.4.2 Complexity of best responses in EFGs 54

4.4.3 Complexity of EFGs of no chance with multiple OMs 55

4.4.4 Complexity of EFGs of chance with multiple OMs 58

4.5 Other variants of Pure Maxmin . 59

4.6 Conclusion . 63

5 Combinatorial game with incomplete information 65

5.1 Introduction . 65

5.2 Games with incomplete information 65

5.2.1 Incomplete information in games 66

5.2.2 Games with incomplete information and public actions 68

5.2.3 Motivation for CGIIs . 72

5.3 Complexity of CGIIs . 73

5.3.1 Summary of results . 74

5.3.2 Hardness for two-player CGIIs 74

5.3.3 Multi-agent coordination in CGIIs 77

5.3.4 Hardness for two-team CGIIs 81

5.3.5 Final remarks . 89

5.4 Search algorithm for vector games 89

5.4.1 The best-defence model . 90

5.4.2 Vector games and vectorisation 91

5.4.3 Generic minimax algorithms 93

5.4.4 Strategy fusion and non-locality 94

5.4.5 Ginsberg’s algorithm . 96

5.4.6 Analysis of Ginsberg’s algorithm 98

5.5 Conclusion . 98

6 Optimisations for Ginsberg’s algorithm 101

6.1 Introduction . 101

6.2 Choice functions as reduction functions 102

6.2.1 Properties of a choice function 102

6.2.2 Reduction functions . 104

6.2.3 Partial reduction . 106

6.2.4 Conclusion . 108

6.3 Strategy prunings . 108

6.3.1 Elimination of dominated strategies in Ginsberg’s algorithm . 108

6.3.2 Non-locality and its implications on sound strategy prunings . 109

6.3.3 Maxmin lower bound pruning 111

6.4 Alpha-beta prunings under partial order 112

6.4.1 Related work . 112

6.4.2 AND-OR graph evaluation under partial order 113

6.4.3 Alpha-beta pruning . 114

6.4.4 Alpha-beta search with heuristic function 117

6.4.5 Alpha-beta duo algorithm 118

6.4.6 Experiments . 121

CONTENTS vii

6.4.7 Conclusion . 125

6.5 Other types of game tree pruning . 125

6.5.1 Alpha-beta-gamma search algorithm 125

6.5.2 Prunings with winning supports under complete information . 127

6.5.3 Information-revealing CGIIs 130

6.5.4 Prunings with path winning supports 133

6.6 Conclusion . 137

7 Opponent models and recursive reasoning 139

7.1 Introduction . 139

7.2 Beyond the best-defence model . 140

7.3 Opponent-model search in vector games 144

7.3.1 Introduction . 144

7.3.2 Problem setting . 144

7.3.3 Opponent-model search . 146

7.3.4 Opponent models with uncertainty 149

7.4 Recursive opponent modelling . 151

7.5 Conclusion . 154

Conclusion and perspectives 156

Appendices 161

A Reminders of definitions 161

A.1 Graph theory . 162

A.2 Complexity classes . 162

A.3 Sets . 164

A.3.1 Family algebra . 164

A.3.2 Lattices . 165

A.4 Rules of Bridge . 167

A.4.1 Bridge deals . 167

B Proofs 171

B.1 Proofs for Chapter 4 . 172

B.1.1 Lemmas for Proposition 4.2.4 172

B.1.2 Compiling away non-Boolean payoffs 176

B.1.3 Tseitin transformation for compact Boolean games 177

B.2 Proofs for Chapter 6 . 179

B.3 Proofs for Chapter 7 . 190

Bibliography 196

viii CONTENTS

Résumé

Introduction

Théorie des jeux

La théorie des jeux, qui propose une modélisation des interactions entre agents (aussi

appelés joueurs), est un domaine interdisciplinaire qui se situe à l’intersection entre

l’économie, l’informatique et les mathématiques. En particulier, c’est une branche

importante de l’intelligence artificielle.

La théorie des jeux se scinde principalement en deux branches : la première

concerne les jeux coopératifs (modélisés par la formation de coalition d’agents), tandis

que la seconde, à laquelle on se consacre dans ce travail, étudie les jeux non coopératifs.

Les jeux non coopératifs sont surtout représentés sous deux formes : la forme normale

et la forme extensive.

• Sous la forme normale, un jeu est défini par un ensemble de joueurs, un en-

semble de stratégies possibles pour chaque joueur, et une fonction d’utilité qui

associe une récompense, pour chaque joueur, à chaque combinaison possible des

stratégies possibles des joueurs. Intuitivement, un tel jeu décrit une situation

dans laquelle les joueurs interagissent en un tour de façon simultanée : chacun

choisit simultanément sa stratégie dans son ensemble de stratégies possibles, puis

reçoit une récompense qui est uniquement déterminée par la fonction d’utilité,

en fonction des stratégies choisies par les joueurs.

• Sous la forme extensive, un jeu est défini par un arbre muni d’informations

supplémentaires, comme le propriétaire d’un nœud interne ou les récompenses

des joueurs à une feuille. Un tel jeu commence à la racine de son arbre et procède

de cette manière : pour chaque nœud interne, son propriétaire doit choisir un

enfant/successeur de ce nœud. Le jeu est terminé quand une feuille est atteinte,

et chaque joueur reçoit alors une récompense, qui dépend de la feuille atteinte.

Dans un jeu sous forme extensive, une stratégie d’un joueur est une application

qui associe chaque nœud qui lui appartient à un enfant de ce nœud.

La forme normale et la forme extensive sont deux représentations équivalentes, en

ce sens qu’un jeu exprimé sous une forme peut être exprimé sous l’autre. Cependant,

la taille de la forme normale d’un jeu est souvent exponentielle en la taille de sa

forme extensive. De surcroı̂t, représenter un jeu sous forme normale masque l’aspect

dynamique de ce jeu. Ainsi, on se permet de se concentrer sur les jeux sous forme

extensive, d’autant plus l’objectif de ce travail est de modéliser les jeux de table auxquels

les humains jouent.

ix

x CONTENTS

Catégories de jeux sous forme extensive

Il est possible de modéliser explicitement les facteurs de chance dans un jeu sous forme

extensive, en attribuant certains nœuds internes à un joueur spécial dénommé Nature.

À chacun de ses nœuds (nommés nœuds de hasard), Nature choisira un successeur de

façon probabiliste, selon une distribution de probabilités connue de tous les joueurs du

jeu. Selon l’existence ou non de nœuds de hasard, un jeu est appelé un jeu de hasard

ou un jeu sans hasard.

Parfois, un joueur dans un jeu ne possède pas une information parfaite : par exemple,

il ne connaı̂t pas tous les choix effectués par les joueurs dans le passé. Autrement dit, ce

joueur peut ignorer où il est dans l’arbre quand il doit prendre une décision. Une telle

situation peut être modélisée en partitionnant les nœuds d’un joueur en des ensembles

d’information, et en imposant que ce joueur doive prendre la même action à tous les

nœuds dans le même ensemble d’information. Intuitivement, pendant le déroulement

d’un tel jeu, quand un joueur doit choisir une action, il est seulement informé de

l’ensemble d’information auquel le nœud courant appartient, mais pas du nœud lui-

même. Si les ensembles d’information d’un joueur sont tous des singletons, on dit

que ce joueur a une information parfaite ; sinon, il a une information imparfaite.

Strictement entre ces deux notions d’information se situe la notion nommée mémoire

parfaite (perfect recall), qui signifie intuitivement qu’un joueur se souvient toujours

des informations qu’il a reçues. En fonction du degré d’information des joueurs, on

peut classer les jeux sous forme extensive en différentes catégories.

Enfin, la notion d’information incomplète modélise les situations dans lesquelles un

joueur ne connaı̂t pas tous les éléments concernant le jeu auquel il joue. Par exemple,

il peut ne pas connaı̂tre le nombre de joueurs dans le jeu, les actions disponibles ou

les gains d’autres joueurs, etc. Bien que les jeux à information incomplète puissent

être modélisés comme des jeux à information imparfaite, ils forment eux-mêmes une

catégorie importante de jeux sous forme extensive.

Concepts de solution

La théorie des jeux est une théorie descriptive et non normative : elle vise à prédire,

non pas à prescrire le déroulement d’un jeu. Plus concrètement, il s’agit de la notion de

concept de solution. Chaque concept de solution impose un ensemble de contraintes,

afin de limiter l’attention que l’on porte sur un jeu aux dénouements raisonnables de

ce jeu. Par exemple, le fameux concept de solution de l’équilibre de Nash juge que les

solutions raisonnables d’un jeu sont celles dans lesquelles personne n’a intérêt à dévier

sa stratégie de façon unilatérale. Dans notre travail, on s’intéresse particulièrement

au concept de solution nommé maxmin, qui prédit que chaque joueur choisit une

stratégie qui vise à maximiser son gain minimum (lorsqu’il considère toutes les stratégies

adverses).

Cadre du travail

Inspiré fortement par le bridge, ce travail consiste à étudier les jeux à information

incomplète à deux joueurs et le calcul lié au concept de solution maxmin pour ces jeux,

sous différents angles : complexité, algorithmique, raisonnement.

Complexité On commencera par une étude complète de la complexité du calcul de la

valeur maxmin pour différentes catégories de jeux. Les résultats permettront de

CONTENTS xi

bien cerner les facteurs qui augmentent la complexité de résoudre un jeu ; ils

assurent également que certaines hypothèses simplificatrices que l’on fera dans

la suite ne conduiront pas à une perte de généralité.

Algorithmique Ensuite, on se consacrera à l’étude des algorithmes et de leurs optimi-

sations pour les jeux à information incomplète comme le bridge.

Raisonnement Finalement, on donnera un rapide aperçu sur les raisonnements d’un

joueur sur les stratégies d’autres joueurs que l’on observe très souvent dans les

jeux à information incomplète, notamment le bridge. On proposera un formalisme

récursif pour modéliser ces raisonnements, et des algorithmes pour implémenter

ce formalisme.

Dans notre travail, on se concentre sur la complexité et les algorithmes autour de

la valeur maxmin pure, qui est le gain qu’un joueur peut garantir en jouant l’une de

ses stratégies possibles. Bien entendu, on peut aussi autoriser un joueur à utiliser le

hasard dans sa stratégie. Par exemple, il peut faire un tirage au sort à chaque nœud

qui lui appartient pour décider l’action qu’il choisira, comme ce que fait Nature, ce qui

correspond à la notion de stratégie comportementale. Il peut également faire un tirage

au sort avant le début du jeu pour choisir une stratégie possible qu’il suivra tout au long

du jeu, ce qui correspond à la notion de stratégie mixte.

Le concept de solution est bien défini par rapport à ces deux notions de stratégies.

En revanche, on s’intéresse principalement à la valeur maxmin pure, plutôt qu’à la

valeur maxmin comportementale ou mixte, pour les raisons suivantes.

• Le calcul de la valeur maxmin comportementale ou mixte est très bien étudié

dans la littérature : sa complexité est connue, et il y a de nombreux travaux sur

les algorithmes pour les calculer exactement ou approximativement.

• Depuis longtemps, il a été constaté que les humains ont tendance à éviter les

stratégies probabilistes (comportementales ou mixtes) et à raisonner en termes

de stratégies pures. En effet, il y a un domaine entier, appelé théorie des jeux

comportementale, qui étudie ce genre de phénomènes, et plus largement la di-

vergence entre ce que prédisent les concepts de solution classiques et ce que

réellement font les humains. Ainsi, pour une intelligence artificielle qui devra

collaborer ou se placer en concurrence avec des humains, il est primordial d’être

capable de raisonner en termes des stratégies pures, ce qui justifie le cadre de ce

travail.

Dans la suite, on résume les résultats par chapitre.

Complexité des jeux sous forme extensive

Complexité des EFGs

On commence ce travail par une étude sur la complexité de trouver une borne inférieure

de la valeur maxmin pure pour les jeux sous forme extensive (extensive-form games, ou

EFGs ci-après) ; on nomme le problème de décision associé Pure Maxmin.

Les résultats concernant la valeur maxmin comportementale ou mixte (c’est-à-dire

Behaviour Maxmin et Mixed Maxmin) sont déjà connus dans la littérature, que l’on

présente dans la table 1 pour faciliter la comparaison avec nos résultats. Dans ce

xii CONTENTS

tableau, les rangées correspondent aux différents degrés d’information pour le joueur

MAX (le joueur dont on cherche à maximiser le gain) : IP pour information parfaite,

MP pour mémoire parfaite, MP-MA pour mémoire parfaite multi-agents (c’est-à-dire

que MAX est une équipe de plusieurs agents partageant le même gain, et ayant chacun

une mémoire parfaite) ; les colonnes correspondent aux différents degrés d’information

pour le joueur MIN, l’unique opposant de MAX. Dans ce tableau, la complexité est

croissante en les deux dimensions ; on constate aussi que le fait d’être multi-agents rend

un jeu plus difficile à résoudre, ce qui est conforme à notre intuition.

Notons que la table 1 concerne la complexité des EFGs avec hasard. Pour les EFGs

sans hasard, leur complexité coı̈ncide avec celle des EFGs avec hasard, sauf dans un cas

encore ouvert qui concerne les EFGs avec mémoire parfaite multi-agents ; on pourra

montrer que même dans ce cas, avec ou sans hasard ne change pas la complexité.

MAX

MIN
IP MP MP-MA

IP P P coNP-c

MP P P coNP-c

MP-MA NP-c NP-c ΣP
2
-c/ΔP

2
-c

Table 1: Complexité de Behaviour Maxmin et de Mixed Maxmin pour les EFGs

avec hasard. Dans la dernière cellule, Behaviour Maxmin et Mixed Maxmin sont

respectivement ΣP
2
-complet et ΔP

2
-complet.

Les résultats de Pure Maxmin sont présentés dans la table 2 ; ceux en caractères

gras sont nouveaux. Pour montrer ces résultats, on propose un nouvel algorithme

en temps polynomial. On utilise aussi des réductions minimales, en ce sens qu’elles

impliquent au plus deux agents de chaque équipe (MAX et MIN), et seulement des

récompenses Booléennes. Quand on contraste la table 2 avec la table 1, on voit que le

paysage de complexité est très différent si MAX peut uniquement jouer des stratégies

pures :

• dans la table 2, la présence de hasard change complètement la complexité dans

beaucoup de cas, parfois même de P à ΣP
2
, ce qui n’est pas le cas dans la table 1 ;

• en l’absence de hasard, le degré d’information de MIN ne joue pas dans la

complexité de Pure Maxmin, contrairement à Behaviour Maxmin ou à Mixed

Maxmin ;

• parfois, Pure Maxmin est plus difficile que Behaviour Maxmin et Mixed

Maxmin ; parfois, c’est le contraire.

Sans hasard Avec hasard

MAX

MIN
PI/MP/MP-MA PI MP MP-MA

PI P P NP-c �
P

2
-c

MP P NP-c NP-c �
P

2
-c

MP-MA NP-c NP-c NP-c ΣP
2
-c

Table 2: Complexité de Pure Maxmin.

CONTENTS xiii

Complexité des jeux représentés de façon compacte

On étudie ensuite la complexité des jeux représentés de façon compacte. La motivation

est naturelle : les jeux de table auxquels on joue sont rarement définis explicitement

par leur arbre de jeu, mais le sont plutôt par leurs règles et par quelques paramètres

décrivant la taille du jeu. Par exemple, le jeu de go est défini par ses règles et par

la taille du goban (traditionnellement de taille 19 × 19, mais possiblement d’autres

dimensions) ; le jeu du bridge est défini par ses règles et par le nombre de rangs et de

couleurs (normalement 4 couleurs, chacune avec 13 rangs). Ainsi, pour ces jeux, ce

sont ces paramètres, plutôt que la taille de leur arbre de jeu, qui sont pertinents pour

analyser la complexité.

Pour modéliser les jeux représentés de façon compacte, on propose deux formal-

ismes diamétralement opposés.

• Le premier, que l’on nomme jeu Booléen compact (CBG ci-après), est une

généralisation des formules Booléennes quantifiées (avec ou sans dépendances ;

QBF ci-après), qui sont bien connues dans la littérature, et encodent des jeux

sous forme extensive de façon compacte. On propose le formalisme CBG pour

généraliser de façon minimale QBF, tout en autorisant des facteurs de hasard et

des équipes multi-agents.

• En revanche, le second, que l’on nomme jeu avec oracle (OG ci-après), est très

générique, et permet de capturer les jeux qui se jouent en espace polynomial et

avec un horizon polynomial, ce qui correspond à la plupart des jeux de table.

On peut vérifier facilement qu’OG est effectivement plus expressif que CBG. On

montre ensuite les résultats de difficulté (pour une classe de complexité) pour CBG, et

les résultats d’appartenance pour OG, ce qui nous permet de confirmer :

• que ces deux formalismes (et donc également tous les formalismes intermédiaires)

sont équivalents en termes de complexité (à des transformations polynomiales

près) ;

• que la notion de complexité utilisée est robuste au formalisme utilisé pour les

jeux représentés de façon compacte, et donc qu’elle représente bien la difficulté

intrinsèque de ces jeux, indépendamment de la représentation choisie.

Sans surprise, la complexité augmente de manière exponentielle quand un jeu est

défini de façon compacte plutôt que par son arbre de jeu. Concrètement, les problèmes

inclus dans P dans la table 2 deviennent PSPACE-complets ; ceux qui sont NP-complets

deviennent NEXP-complets ; ceux qui sontΣP
2
-complets deviennent NEXPNP-complets.

Autres résultats de complexité

Enfin, on étudie aussi la complexité de calculer les stratégies optimales de MAX quand

MIN choisit sa stratégie dans un ensemble restreint et connu par MAX. Ces stratégies de

MIN sont appelées modèles d’opposants (OM ci-après) dans la littérature ; cette notion

d’OM permet de simuler les situations dans lesquelles MAX connaı̂t (parfaitement ou

partiellement) la procédure de raisonnement de MIN. Les résultats sont présentés dans

la table 3, où les colonnes correspondent au nombre d’OM connus par MAX. Dans

chaque cellule, il y a deux cases : celle du haut correspond aux EFGs sans hasard, et

celle du bas aux EFGs avec hasard.

xiv CONTENTS

MAX

Hazard |ΣO
− |

1 constant (≥ 2) non borné

PI
P P P

P NP-c NP-c

PR
P P P

P NP-c NP-c

MA-PR
P P NP-c

NP-c NP-c NP-c

Table 3: Complexité de Pure OM-Maxmin.

Enfin, on étudie la complexité des problèmes liés à une borne supérieure ou à la

valeur exacte de la valeur maxmin pure. Il s’avère que la complexité de ces problèmes

est intimement liée aux résultats de la table 2.

Jeux combinatoires à information incomplète

On se focalise ensuite sur les jeux à information incomplète. Motivé par le bridge, on

propose un nouveau formalisme, nommé jeu combinatoire à information incomplète

(CGII ci-après).

Un CGII est défini par un arbre de jeu public, un modèle d’Aumann de l’information

incomplète (c’est-à-dire un modèle de Kripke S5), et une fonction de récompense. Au

début d’un tel jeu, Nature tire un monde dans un univers fixé et connu par tous les

joueurs ; chaque joueur observe partiellement ou parfaitement ce monde. Par exemple,

pour un jeu de carte comme le bridge, l’univers comprend toutes les distributions

possibles des cartes aux joueurs ; chaque joueur observe sa propre main, mais pas la

main des autres joueurs. Ensuite, le jeu continue dans son arbre public comme dans

un EFG sans hasard, dans lequel les actions choisies par les joueurs sont parfaitement

observables par tous. À la fin, la récompense d’un joueur peut dépendre à la fois de la

feuille atteinte et du monde choisi par Nature.

En plus d’être motivé par le souhait de modéliser le bridge, ce nouveau formalisme

est conçu délibérément pour :

• généraliser de façon minimale les jeux combinatoires (c’est-à-dire les jeux à

information parfaite et sans hasard) pour inclure aussi la possibilité qu’un joueur

ait une information incomplète ;

• par rapport aux EFGs, mieux capturer l’essence de l’information incomplète due

au fait que toutes les actions sont publiques : en effet, dans un CGII, l’information

imparfaite d’un joueur pendant le jeu vient seulement de son observation partielle

du monde tiré par Nature (qui est aussi la source de l’information incomplète), et

non des actions cachées effectuées par les autres joueurs.

Au premier regard, cette définition de CGII paraı̂t excessive, car l’arbre est public

et sans nœud de hasard. Pourtant, ces restrictions sont bien motivées et justifiées. Par

exemple, les facteurs de hasard peuvent être encodés par le tirage initial d’un monde ;

une application remarquable de cette idée est la génération procédurale dans les jeux

vidéos, dont la sortie est complètement déterminée par une unique graine aléatoire.

CONTENTS xv

L’argument le plus fort favorisant ce nouveau formalisme est donné par les résultats

de complexité de Pure Maxmin pour les CGIIs. Certes, les constructions sont beaucoup

plus complexes, du fait de l’absence d’actions cachées dans les CGIIs, mais les résultats

de complexité sont exactement les mêmes que ceux pour les EFGs. On en déduit que

le formalisme des CGIIs, en dépit de sa simplicité, est aussi expressif (à un facteur

polynomial près) que le formalisme des EFGs.

Algorithmes et optimisations pour les CGIIs

On poursuit par une étude algorithmique, en faisant l’hypothèse simplificatrice que

MAX a une information incomplète tandis que MIN a une information complète. On

appelle les CGIIs satisfaisant cette propriété les jeux vectoriels, car les récompenses de

ces jeux peuvent être représentées comme des vecteurs de réels.

Le modèle de la meilleure défense permet de transformer tous les CGIIs en des

CGIIs dans lesquels MIN a une information complète. La valeur maxmin d’un CGII

est toujours bornée inférieurement par celle du jeu obtenu via cette transformation ;

empiriquement, pour le bridge, les deux valeurs sont souvent très proches, voire égales.

L’intérêt principal de cette transformation est que le jeu transformé est en général

beaucoup plus facile à résoudre que le jeu initial, ce que les résultats de complexité

confirment.

On montre d’abord les difficultés particulières du calcul de la valeur maxmin pure

d’un CGII (notamment la fusion de stratégies et la non-localité). Ensuite, on présente

un algorithme en recherche par profondeur, initialement conçu sans preuve par Ginsberg

en 2001, qui calcule la valeur maxmin pure exacte.

Vu que le problème sous-jacent de l’algorithme de Ginsberg est NP-dur, cet al-

gorithme n’est naturellement pas en temps polynomial. Plus précisément, il tourne

en temps linéaire en la taille de l’arbre, mais exponentiel en la taille de l’univers

(le paramètre qui quantifie le degré d’information incomplète du joueur MAX). En

conséquence, des optimisations sont indispensables afin de le faire passer à l’échelle.

On regroupe les optimisations que l’on étudie dans notre travail en deux catégories :

élagage de stratégies et élagage de l’arbre de jeu.

L’exemple principal d’élagage de stratégies est donné par l’élimination des stratégies

dominées. On formule une méthode d’élagage de stratégies par un objet appelé fonction

de choix (venant du domaine de la théorie du choix social). On présente des critères

quasiment nécessaires et suffisants afin qu’une fonction de choix soit une méthode

d’élagage correcte (c’est-à-dire qu’elle ne change pas la valeur maxmin calculée). On

montre aussi que sous ces mêmes conditions, appliquer partiellement un élagage partout

dans l’arbre reste un élagage correct.

Quant à l’élagage de l’arbre de jeu, on étend l’élagage alpha-bêta à un cadre encore

plus général que celui des jeux vectoriels, qui est l’évaluation d’un graphe et/ou avec des

valeurs prises dans un treillis. On montre que l’élagage alpha-bêta reste correct dans ce

cadre, même quand on initialise la valeur d’un nœud lors de la recherche arborescente,

pourvu que la valeur d’initialisation satisfasse une certaine condition d’admissibilité.

Un bonus de ce résultat est une caractérisation intuitive de la valeur renvoyée par une

recherche alpha-bêta, en fonction de la valeur exacte et de la fenêtre de recherche (c’est-

à-dire la fenêtre définie par alpha et bêta). On conçoit aussi une manière de munir

l’élagage alpha-bêta sous ordre partiel d’un cache. Les expériences sur des benchmarks

synthétiques montrent la performance de nos algorithmes par rapport à un algorithme

minimax simple ou une recherche alpha-bêta sans cache.

xvi CONTENTS

Enfin, on ajoute un troisième paramètre, noté gamma, à l’élagage, pour obtenir un

nouvel algorithme que l’on nomme l’élagage alpha-bêta-gamma. Ce nouveau paramètre

gamma n’est pas mis à jour de façon mécanique comme alpha ou bêta lors de la

recherche ; il permet donc d’encoder des heuristiques (par exemple, celles venant des

connaissances d’un expert humain) pour mieux guider la recherche. Cet algorithme

capture aussi des méthodes de recherche arborescente (nommées élagage CI et élagage

PWS dans notre travail) utilisées par les joueurs humains de bridge.

Raisonnement récursif et modèles d’opposants

Dans le dernier chapitre, qui représente un travail en cours, on parle des motivations et

des pistes possibles pour aller au-delà du modèle de la meilleure défense, qui surestime

le pouvoir de MIN en supposant qu’il a une information complète. L’approche la plus

élégante et prometteuse pour cet objectif semble être l’idée du raisonnement récursif. Ce

type de raisonnement capture notamment certains algorithmes existants pour résoudre

des jeux (fictitious play, l’algorithme de double oracle, la dynamique de meilleure

réponse, etc.), mais également des modèles récursifs proposés par la théorie des jeux

comportementale pour modéliser les comportements des humains.

Pour implémenter un tel raisonnement récursif dans le cadre des jeux vectoriels,

il faut être capable de trouver des meilleures réponses en présence d’OM (calculés au

niveau précédent de la récursion). Ainsi, on se ramène à étudier différents types d’OM :

probabiliste, lexicographique, non déterministe, etc. Pour chaque type d’OM que

l’on considère, on propose un algorithme de recherche en profondeur pour calculer une

meilleure réponse contre les OM ; ces algorithmes sont présentés sous une forme unifiée,

et ils sont linéaires en temps quand le problème sous-jacent n’est pas NP-complet. Pour

conclure, on montre comment ces algorithmes s’utilisent dans un raisonnement récursif,

en étudiant un exemple venant d’une donne de bridge jouée dans une compétition.

Acknowledgements

Academic-wise

I would like to thank Bruno Zanuttini, my advisor at university. It has been a great

pleasure to work with you on the fascinating problems in this dissertation. Apart from

your precious academic guidance, I especially want to thank you for the copious time

you have dedicated to working with me or to reading scrupulously all my writings,

despite being encumbered by multiple other responsibilities.

Next, I would like to thank Véronique Ventos, my supervisor at NukkAI. Without our

serendipitous encounter, your vision behind the creation of NukkAI, or your enthusiastic

support, I would not have switched from theoretical physics to computer science, nor

embarked on the journey leading to this dissertation. Also, thank you for giving me carte

blanche to choose my research subjects throughout my PhD, for which I am particularly

grateful.

I would also like to thank Nathan Sturtevant and Olivier Spanjaard for accepting to

be the reviewers of my dissertation; hopefully, it entertains you.

Work-wise

It goes without saying that I am indebted to my colleagues at NukkAI, including (but

not limited to) our office manager David Touitou (thank you for taking care of all the

administrative details of and beyond my PhD, which can sometimes be daunting for a

foreigner in France); our CTO Swann Legras (thank you for all the technical support);

our consultant Tristan Cazenave (thank you for your academic input to my research

and for accepting to be in the jury of my defence); our project manager Jean-Pierre

Desmoulins (thank you for being a role model in terms of work-related organisation

and for having directed the writing of Le bridge français1); our close friend and world

champion of Bridge Philippe Cronier (thank you for providing me with materials on

psychological strategies in Bridge). I thank all my colleagues for creating a convivial

atmosphere to work in. Special thanks go to our CEO, Jean-Baptiste Fantun, for his

vision resulting in co-founding NukkAI with Véronique Ventos, and for his support and

trust in my work.

Life-wise

First and foremost, I want to thank my wife LI Danlin. As stated in the dedication, I

would not have completed my PhD without your love and support, for 11 years and

counting. I truly hope that this dissertation bodes well for our future. I am also grateful

1This is the three-volume introduction that finally got me into Bridge, the complex game that has inspired

this work; hence it worths a special mention.

xvii

xviii CONTENTS

to my parents, LI Yaoming and YU Hongmei, for their endless encouragement and love

throughout my life; this gratitude also extends to my maternal grandparents, especially

to my grandfather, who piqued my curiosity in science when I was so little and who

encouraged me to go aboard for pursing my study in fundamental sciences. I also owe

much to my teachers from classe préparatoire aux grandes écoles at IFCEN for my

scientific (and linguistic) training. Lastly, I express my gratitude to all my friends, in

particular my classmates from class 12 of my junior high school, who have had great

influence on my personal development and passions (e.g. my predilection for games

with incomplete information).

Caveat

Despite considerable efforts, this list of acknowledgements can never be exhaustive.

So, a final thank you to everyone, mentioned above or not, that has been kind to me and

conducive to the fruition of this dissertation.

Part I

Introduction and background

1

Chapter 1

Introduction

General presentation

Inspired and motivated by the card play of the game of Bridge,1 this dissertation

concerns games with incomplete information, from the perspective of computational

complexity, algorithmics, and reasoning.

Game theory is a mathematical framework for studying multi-agent interactions,

in which each agent chooses their action independently and the outcome (and payoffs)

depends on the action chosen by all the agents. We focus on extensive-form games,

in which the interaction between agents takes place sequentially, i.e. every agent takes

turns to make a move. Prominent examples of such games are Chess and Go. Of

particular interest to us is the notion of games with incomplete information, which are

games in which agents do not have common knowledge of the game they play. For

instance, an agent does not know the number of participants in an auction, or how much

these participants value the object to be sold; a Poker player does not see the cards

in their opponent’s hidden hands, hence cannot know for sure the exact consequence

(i.e. payoff) of calling and raising bets; a Bridge or Hearts player does not know the

cards that their opponent can play during a trick since this depends on their hidden

hand; etc. We are interested in knowing how much reward an agent can guarantee

for themselves in these games; this corresponds to the notion of maxmin value, well

known in optimisation under uncertainty, in which we aim to ensure that the worst

possible outcome is not too bad. The choice to study this solution concept is initially

motivated by the card play phase of Bridge, in which declarer searches for optimal

and robust strategies that maximise their winning chance (with respect to hidden hands

of defenders and against all strategies of defenders), which is exactly captured by the

notion of maxmin value.

We study the computational complexity of games, which characterises how hard

it is to play well in games. Intuitively, games involving hidden information or more

players are more difficult, which is indeed confirmed by the study of complexity. Such

results are also indicators of how unlikely we are to find efficient and general algorithms

to solve “all” games. The more an algorithm is adapted to a particular problem, the less

general it is, but the more efficient it can be by exploiting the features of the problem.

This intrinsic trade-off between generality and efficiency needs to be taken into account

when we design algorithms to tackle real-life problems.

1The rules of Bridge can be found in Appendix A.4.

3

4 CHAPTER 1. INTRODUCTION

Reasoning in games is also a fascinating topic. When humans interact with each

other, in games as well as in other social contexts, they constantly perform such rea-

soning, which comes in many different forms. For example, we can have epistemic

reasoning, about knowledge (I have this card in my hand, and I know that my opponent

knows that it is in my hand, but they do not know that I know that they know; hence

I can trick them in this way2); probabilistic reasoning, about events (if it rains today,

how likely is it going to rain tomorrow?); or reasoning about the state of mind of the

others (my opponent plays this card, is it because they have certain cards in their hand;

hence they play this particular card as part of their strategy to defeat me? My wife does

not answer my call, is she mad at me?). Therefore, the modelling, formalisation, and

automation of such reasoning is an important subject for artificial intelligence.

Organisation

This dissertation will be organised as follows.

Chapter 2 We survey the literature that is relevant to or inspires our work.

Chapter 3 The notions from the field of game theory that we use throughout this

dissertation are given in a formal and precise manner.

Chapter 4 The computational complexity of finding optimal pure strategies for differ-

ent classes of extensive-form games is thoroughly studied.

Chapter 5 and 6 We turn our attention to games with incomplete information; the

complexity and algorithms (and their optimisations) for these games are studied.

Chapter 7 We briefly touch on recursive reasoning and opponent modelling in games.

Contribution

Our main contributions are the following.

• We fill the gaps in the literature by proposing new polynomial-time algorithms

and new hardness results, so that the full complexity landscape of finding robust

strategies in games is now known and uniformly presented in one place for future

reference.

• We introduce a new subclass of games with incomplete information, called combi-

natorial games with incomplete information, that minimally captures the essence

of the notion of incomplete information. We fully justify its introduction and

show that it is equally expressive as the generic model of extensive-form games

of chance.

• By studying the optimisations of algorithms for games with incomplete informa-

tion, we refine and develop techniques that can be applied to more general games

(e.g. alpha-beta search under partial order).

• And near the end, we show how different kinds of knowledge about the opponents’

reasoning and behaviour can be taken into account as opponent models, which

can then be exploited by algorithms.

2For a ludic example, see “The One Where Everybody Finds Out”, Episode 14, Season 5 of Friends.

Chapter 2

Related work

In this chapter, we provide a high-level overview of work relevant to this dissertation.

More detailed and direct references will be given progressively along the natural nar-

rative of the following chapters. Multiple references for the same subject are sorted by

their potential (judged presumptuously by us) to promptly get readers familiar with the

subject.

For well-established fields or well-known results in the literature, we prefer to cite

books (especially textbooks) since they often provide a more holistic and pedagogical

presentation of the subjects. We take great care to choose which books we cite so that

readers new to a topic can take a leap of faith to dive into our recommendations.

2.1 Decision-making

This dissertation concerns decision-making, a field central to artificial intelligence. The

standard reference on artificial intelligence is, no doubt, Russell and Norvig (2020),

which comprehensively covers both classical AI (such as search, logic, and decision-

making) and machine learning. As for the field of decision-making itself (which

encompasses probabilistic reasoning, utility theory, game theory, automatic planning,

etc.), the recent books in open access by Kochenderfer (2015) and Kochenderfer et al.

(2022) seem to be good references; both provide copious pointers to the literature; the

former focuses on theory and application, while the latter focuses on algorithmics, and

presents highly readable Julia code for most important exact and approximate algorithms

in the field of decision-making.

Here are some prominent models for decision-making under uncertainty.

Games Games from the field of game theory model multi-agent interaction. Non-

cooperative 1 games come mainly in two categories: normal-form games, for one-

round interaction during which agents pick their action concurrently; extensive-

form games (EFGs), for multi-round interaction during which agents take turns

to make decision. The reward at the end of a game is determined by the actions

of each agent during the game; the goal of each agent is to maximise their own

reward. Depending on whether an agent observes (or retains) the actions in the

past, games can be with perfect or imperfect information. A game can also be

with incomplete information, when players do not have common knowledge of

1“Non-cooperative” typically means agents do not necessarily have their interests aligned.

5

6 CHAPTER 2. RELATED WORK

the game they play (e.g. a player does not know the reward function or available

actions of the other players, such as in card games).

Markov decision processes MDPs (Puterman, 1994) are used to model sequential

decision-making (typically with an infinite horizon) of a single agent in an en-

vironment described by a stochastic transition system. At each discrete time

step, an agent takes an action, which brings them a certain amount of reward

and causes the system to transition to another state according to some probability

distribution. The goal of the agent is usually to maximise their total reward for a

finite horizon or their discounted expected reward for an infinite horizon.

Contrary to games, MDPs (and their variants discussed below) do not explicitly

store information about the history, i.e. the sequence of actions an agent has

taken (and of observations they have received) in the past. In particular, the

agent in an MDP can implement a history-dependent policy, i.e. take different

actions in the same state of the system according to the history. On the other

hand, the history in a game is explicitly represented by the position of the current

node in the game tree. Hence, for modelling sequential decision-making, MDPs

can be more compact than games, so are, in general, more difficult to solve (cf.

Subsection 2.3.2).

Variants of MDP Like games, MDP also has many variants, depending on the number

of agents and their observability on the state of the system: partially observable

MDP (POMDP), which has one agent with partial observability (Kaelbling et al.,

1998); multi-agent MDP, which has multiple cooperative2 agents with full ob-

servability (Boutilier, 1996); decentralised POMDP (dec-POMDP), which has

multiple cooperative agents with partial observability (Seuken and Zilberstein,

2008; Oliehoek and Amato, 2016); partially observable stochastic game (POSG),

which has multiple non-cooperative agents with partial observability (Hansen

et al., 2004). Reinforcement learning concerns situations in which an agent acts

in an MDP with an unknown transition function (Sutton and Barto, 2018).

Propositional planning Propositional planning (Geffner and Bonet, 2013; Ghallab

et al., 2016, 2004) is similar to MDP in spirit, but comes with a non-stochastic

transition system compactly encoded by propositional variables. In addition, the

typical goal of an agent is to reach a state instead of maximising accumulated

reward. Similar to MDP, propositional planning can be classified into different

categories, depending on whether an agent has full, partial, or no observabil-

ity, and whether the transition system is deterministic or nondeterministic. The

category particularly relevant to the topics of this dissertation is the one called

contingent planning (agent with partial observability, nondeterministic environ-

ment) (Rintanen, 2004; Geffner and Bonet, 2013). It is worth mentioning that

there is a variant of MDP called qualitative Dec-POMDP (Brafman et al., 2013)

that extends contingent planning to the multi-agent setting.

Graph games Graph games (Apt and Grädel, 2011), also called games on graphs, are

useful for synthesis and verification of reactive systems. In graph games, two non-

cooperative agents with partial or full observability pick actions in a turn-based

or concurrent manner on a graph with deterministic or stochastic transition; the

2“Cooperative” typically means agents share the same reward function; hence their interests are perfectly

aligned.

2.2. GAME THEORY 7

goal of an agent is typically described by an l-regular language over the vertices

of the graph.

Kochenderfer et al. (2022) provide a particularly insightful vision about decision-

making under uncertainty, which we reproduce here. Decision-making under uncer-

tainty is a situation in which agents interact with an environment (and potentially each

other) by choosing actions at discrete time steps to achieve a certain goal, based on

their knowledge of the environment and past observations, under various sources of

uncertainty.

Outcome uncertainty Agents are uncertain of the effects of their actions (e.g. systems

with nondeterministic or probabilistic transitions).

Model uncertainty agents are uncertain of the transition rules of the environment

(e.g. games with incomplete information; the problem setting of reinforcement

learning).

State uncertainty Agents are uncertain of the true state of the environment (e.g. partial

or no observability).

Interaction uncertainty Agents are uncertain of the behaviour of the other agents

interacting in the same environment (e.g. EFGs; POSG; graph games).

2.2 Game theory

Among all models for decision-making under uncertainty, this dissertation concentrates

on games, especially EFGs with incomplete information.

The rigorous treatment of game-theoretic subjects in this dissertation is highly

inspired by Maschler et al. (2020), a modern and comprehensive textbook on game

theory written in formal and rigorous style. It mainly covers non-cooperative game

theory and cooperative game theory in depth from a mathematical perspective, with

detailed proofs for nearly all results in the main text. For computational aspects, we can

refer to Faliszewski et al. (2016), again an accessible introduction, which also covers

(computational) social choice theory. Another viable choice is the book by Shoham and

Leyton-Brown (2009), which presents game theory from the perspective of computer

science, hence has more algorithmic and logical flavour and more emphases on game

theory as a model for multi-agent systems. Finally, for examples of different kinds

of games illustrating notions from non-cooperative game theory, one can turn to the

textbook by Bonanno (2018).

For more advanced subjects on game theory, there are books that can serve as handy

reference work, some more like an anthology than a textbook: Roughgarden and Iwama

(2017) and Nisan et al. (2007) for algorithmic game theory; Brandt et al. (2016) for

computational social choice; and Perea (2012, 2024) for epistemic game theory.

2.2.1 Solution concepts for games

The goal of studying a given game, be it in normal form or extensive form, is to

predict the behaviour of the agents in a game, i.e. what strategies each agent will play

if they participate in the game. A solution concept is a systematic way to output

such a prediction for all games. During the long history of game theory (i.e. since the

foundational work by von Neumann and Morgenstern (1994)), various solution concepts

8 CHAPTER 2. RELATED WORK

have been proposed, some of which are presented below. Readers may also refer to

Maschler et al. (2020, Chapter 7) and Shoham and Leyton-Brown (2009, Sections 3.3-4)

for a quick overview.

Nash equilibrium Nash equilibrium (NE) is the central solution concept of game

theory. An NE is a strategy profile (i.e. a combination of strategies for each

player) such that no one has a strict unilateral incentive to deviate. Hence, NE is

a solution concept about stability. Apart from stability, NE also has the desirable

property of guaranteed existence: every finite game has an NE in mixed strategies

(Nash, 1950, 1951).

Maxmin Maxmin, also called maximin, is another well-known solution concept. It

predicts that every player aims to maximise the minimum reward they get against

all possible strategies of their opponents, whence the name “maxmin”. Hence,

maxmin is a solution concept about safety and robustness since playing a maxmin

strategy guarantees a certain amount of reward for a player, no matter what

happens. Interestingly, in a zero-sum game, the notions of Nash equilibrium and

maxmin coincide, in the sense that a mixed strategy profile is an NE if and only

if each strategy in it is a mixed maxmin strategy.

Refinements of Nash equilibrium Nash equilibrium applied to EFGs may generate

solutions with undesirable properties such as non-credible threat (i.e. not sequen-

tially rational), or sensibility to opponent’s small deviations from equilibrium. As

a result, many refinements of NE have been proposed and studied in the literature,

such as sequential equilibrium, perfect equilibrium, proper equilibrium, etc.; see

the work by van Damme (1991) for a detailed exposition.

Rationality Very informally speaking, a player is rational if they choose the optimal

action according to their belief about their opponents’ possible behaviour, which

does not necessarily have to be correct. If a player believes in their opponent’s

rationality, then they believe that their opponent never chooses actions that are

never optimal according to their opponent’s belief. As a result, this player will

no longer choose actions that are only optimal against actions that will never

be chosen by their opponent. Hence, belief in rationality leads to reduction

of strategies; this reasoning can be repeated recursively, leading a fixed point

considered to be the solution of a game. Assuming different types of belief or the

order of recursion will lead to different solution concepts, such as rationalisability

(Pearce, 1984), backward or forward induction (Perea, 2010), etc. These kinds of

solution concepts are the subjects of epistemic game theory, which, rather than

“solving games”, prefers to study how players reason in games. See Perea (2012)

for a more detailed treatment and comprehensive references of this field.

Behavioural game theory Human players do not have unlimited computational re-

sources, nor are they completely rational due to cognitive limitations, emotions,

and biases. As a result, the behaviour of humans in games is often not consistent

with the predictions of usual solution concepts (Dhami, 2019, Chapter 1). The

field of behavioural game theory takes these aspects into account and proposes

solution concepts that are more adapted to strategic human choice, e.g. level-k

models (Stahl and Wilson, 1995; Nagel, 1995) and cognitive hierarchy models

(Camerer et al., 2004); see Dhami (2019, Chapter 2) for more models from this

field.

2.2. GAME THEORY 9

For newcomers to game theory, it is important to keep in mind that there is no such

thing as a correct or wrong solution concept: a solution concept is only a description or

prediction, not a prescription. How well a solution concept can predict the outcome of

a game depends fundamentally on how solid its underlying assumptions (e.g. level of

rationality or computational resources) are with respect to the real players who play the

game. In addition, a solution concept also expresses the desirable property (stability,

robustness, rationality) we are looking for in the gameplay. In short, no single solution

concept can be mindlessly applied to all types of games with the hope that it foresees

perfectly how a game proceeds; one should always choose the right solution concept(s)

to adapt to the classes of games and types of players in their problem setting. For more

arguments about why we should care more about solution concepts besides NE, see

Halpern (2011).

As for our work, we mainly cover the solution concept of maxmin, especially pure

maxmin, for EFGs, since maxmin is well-suited for the game of Bridge.

2.2.2 Team games

In our work, we also study the complexity of maxmin in multi-agent settings, i.e. when

MAX or MIN consists of multiple agents, who all have perfect recall but do not share

observation or information. This setting, called (two-)team games, is worth a special

mention since until quite recently, most of the literature on complexity or algorithms

for equilibrium or maxmin focuses solely on games involving two agents.

Maxmin for team MAX is called team maxmin equilibrium (TME) in the literature,

and was first proposed by von Stengel and Koller (1997). Almost twenty years later,

Basilico et al. (2017); Celli and Gatti (2018) propose another maxmin notion called

TMECor (“Cor” stands for “correlation”), which allows agents in team MAX to have

access to a correlation device in order to coordinate in their mixed strategies (in a

similar vein to correlated equilibrium; see Maschler et al. (2020, Chapter 8)). These

works also study the inefficiency gap between NE, TME, and TMECor.3 Seemingly,

these works have stirred the community’s interest in team games; many algorithms for

computing TMECor of EFGs have been designed in recent years. To cite a few: Farina

et al. (2018); Zhang et al. (2021); Zhang and Sandholm (2022); Farina et al. (2021);

Zhang et al. (2023).

2.2.3 Games with public actions

One of our contributions is to propose a new subclass of games, which concern EFGs

with incomplete information but with public actions and no chance node except at the

root (i.e. the beginning of the game), where Nature draws a world (or types for players).

We name this subclass combinatorial game with incomplete information (CGII) since it

minimally generalises the notion of combinatorial games, which are two-player games

of no chance and with perfect information (hence a fortiori public actions), to allow

incomplete information.

The field of combinatorial game theory, which concerns the mathematical structure

and analysis of these games, was established in the 70s by two books: On Numbers and

Games (latest edition: Conway, 2000) and Winning Ways (latest editions: Berlekamp

et al., 2001, 2003a,b, 2004). The latter multi-volume book still serves as a ludic and

witty introduction to the field; see also Albert et al. (2019) for a modern and gentle

3Allowing more communication between agents of team MAX increases their maxmin value.

10 CHAPTER 2. RELATED WORK

introduction and Siegel (2013) for an advanced treatment. For recent advances in the

field, one may consult these collections of proceedings, appropriately named Games of

no Chance: Nowakowski (1996, 2002); Albert and Nowakowski (2009); Nowakowski

(2015); Larsson (2019).

Another motivation of ours for introducing CGII is to show that the difficulty (i.e.

complexity) of solving two-player or two-team games does not come from hidden

actions, but from incomplete information.

A third motivation (not originated from our own research, but from Kovarı́k et al.

(2022)), is to highlight the distinction between public and private actions. According

to Kovarı́k et al. (2022), this distinction, essential for recent search algorithms, is

partially lost when we model sequential multi-agent interaction with EFGs, which do

not explicitly tell whether an action is public or not (but implicitly by using information

sets of players). In their work, they propose an alternative model for stochastic games

that makes this distinction prominent, and show how to transform such models to

augmented EFGs and vice versa.

2.3 Computational complexity

The standard reference on computational complexity is Arora and Barak (2009), which

contains the definitions of all notions from the theory of computation that we use in

this dissertation (the notion of reduction, complexity classes such as NP and PSPACE,

canonical complete problems for these classes, etc.), and much more. It can be com-

plemented by the book (in open access but written in French) by Perifel (2014), which

painstakingly fills the gaps in Arora and Barak (2009) by giving formal definitions

and detailed proofs. Readers new to the theory of computation can also turn to Sipser

(2012) and Moore and Mertens (2011). Both are very accessible introductions: the

former one is formal and gets to the point quickly; the latter one is more casual and does

not hesitate to discuss the connections between the theory of computation and other

subjects, especially natural sciences. After these two books, one may turn to Kozen

(2006) for more advanced subjects, clearly presented with lucid proofs.

2.3.1 Complexity of games

Most work in the literature on the computational complexity of games concerns the

complexity of finding Nash equilibria, especially for normal-form games (e.g. Gilboa

and Zemel (1989); Daskalakis et al. (2009), who show the PPAD-completeness of

computing NE). For more references, one may consult the introduction by Conitzer and

Sandholm (2008), who also show that it is NP-complete to decide whether NEs with

certain natural properties exist.

Koller and Megiddo (1992); Koller et al. (1996); von Stengel (1996) made the

first major steps towards understanding the complexity landscape of solving two-player

zero-sum EFGs. Apart from studying the complexity of computing pure, behaviour,

and mixed maxmin strategies for some classes of EFGs, they also give polynomial-time

algorithms for computing behaviour maxmin strategies of EFGs with perfect recall,

based on linear programming. McMahan et al. (2003) propose a double-oracle algo-

rithm for computing optimal strategies for Markov decision processes with adversarial

cost functions, which can also be regarded as a polynomial-time algorithm for com-

puting the mixed maxmin strategies of a normal-form game. Bosanský et al. (2014)

2.4. SEARCH ALGORITHMS FOR GAMES 11

combine these ideas to propose an algorithm for zero-sum EFGs with perfect recall,

which is efficient when optimal mixed strategies have small supports.

Building on the work by Koller and Megiddo (1992), Gimbert et al. (2020) and

Zhang et al. (2023) study the complexity of TME and TMECor, thereby yielding a

relatively complete picture of the complexity of behaviour and mixed maxmin for

two-team EFGs.

Peterson et al. (2001) study the complexity of compactly represented EFGs. How-

ever, they define games as alternating Turing machines with different kinds of specifi-

cations (number of alternations, amount of space, private or public band, etc.). They

also invent a formalism called dependency quantified Boolean formulae, generalising

the well-known formalism of quantified Boolean formulae (which compactly repre-

sents two-player EFGs of no chance and with perfect information) to allow multiple

agents of MAX, each having their private information. The complexity of deciding

the truth value of such a formula is proved to be NEXP-complete, in contrast with the

PSPACE-completeness for QBF.

Finally, Bonnet et al. (2013) show that perfect information trick-taking card games,

which include double dummy Bridge (i.e. Bridge played with no hidden hand) and

many other card games, are PSPACE-complete with respect to the number of players,

suits, and ranks encoded in unary. However, the exact complexity of Bridge itself, a

team-vs-player game, is still unknown. For complexity results of puzzle games and

board games, and a unifying framework to analyse such results, see the monograph by

Hearn and Demaine (2009).

2.3.2 Complexity of other models for decision-making

Parallelly, the complexity of graph games for different observability and objectives

has been thoroughly studied: see the surveys by Chatterjee and Henzinger (2012) and

Chatterjee et al. (2013).

The complexity (and computability) of automatic planning is also well-established.

One may refer to Mundhenk et al. (2000) for the complexity of finite horizon MDP

and POMDP (with different observability, stationary or time/history-dependent poli-

cies, short or long horizon); Madani et al. (2003) for the undecidability of infinite

horizon POMDP; Bernstein et al. (2002) for the complexity of Dec-POMDP; Brafman

et al. (2013) for the complexity of qualitative Dec-POMDP; Goldsmith and Mundhenk

(2007) for the complexity of POSG; and Rintanen (2004) for the complexity of propo-

sitional planning with full/no/partial observability and deterministic/nondeterministic

transitions.

2.4 Search algorithms for games

Algorithms for playing games have been studied since the birth of the field of game

theory and artificial intelligence; see Russell and Norvig (2020, Chapter 5) for an

overview. Notable examples include the minimax algorithm (Zermelo, 1913), alpha-

beta search (Knuth and Moore, 1975; Pearl, 1982; Marsland, 1986), the SSS* algorithm

(Stockman, 1979), iterative deepening (Korf, 1985), proof-number search (Allis et al.,

1994), Monte Carlo tree search (Coulom, 2006; Kocsis and Szepesvári, 2006; Browne

et al., 2012; Swiechowski et al., 2023), and (deep) reinforcement learning (Sutton and

Barto, 2018).

12 CHAPTER 2. RELATED WORK

These techniques have been very successful in building AIs for games with perfect

information, e.g. Chess (Campbell et al., 2002; Haworth and Hernandez, 2021), Check-

ers (Schaeffer et al., 2007; Schaeffer, 2008), Go (Silver et al., 2016, 2017), and even

Atari games (Schrittwieser et al., 2020).

2.4.1 Games with incomplete information

A good introduction to games with incomplete information is provided, as you can

guess, by Maschler et al. (2020, Chapter 9); one may also consult Bonanno (2018,

Part V).

Compared to games with perfect information, games with imperfect (and in partic-

ular, incomplete) information have received relatively little attention. However, there

is now a growing interest in this area since it is a natural continuation from games

with perfect information; we may cite a few examples of recent research attacking such

games: Bridge (Ginsberg, 2001; Cazenave and Ventos, 2020), Skat (Kupferschmid and

Helmert, 2006; Buro et al., 2009; Rebstock et al., 2019; Edelkamp, 2020), Hearts and

Spades (Sturtevant and White, 2006), Stratego (Pérolat et al., 2022), and most notably

Poker (Bowling et al., 2017; Brown and Sandholm, 2017, 2019).

Important algorithms in this field include perfect information Monte Carlo search

(Levy, 1989; Long et al., 2010), Information Set MCTS (Cowling et al., 2012), and

counterfactual regret minimisation (Zinkevich et al., 2007).

2.4.2 Games with public actions

Of particular interest to us is the problem of finding pure optimal strategies for games

with incomplete information and public actions, with Bridge as our main inspiration

and target (first advocated by Levy (1989)). Along this line of research, Frank and

Basin (1998) propose the best-defence model, which consists in approximating a game

with incomplete information by a game with one-sided incomplete information in which

MIN has complete information. They put forward the notions of strategy fusion and

non-locality to explain why the traditional minimax algorithm (i.e. backward induction)

does not solve such games correctly. Subsequently, Frank and Basin (2001) showed that

finding optimal pure strategies for these games is NP-complete, even when all actions

are public. Later, Ginsberg (2001) proposes the first exact algorithm for this problem

without proving its correctness. Many works, including ours, build on their algorithm

and apply it to different games; for instance, Cazenave and Ventos (2020) and Cazenave

et al. (2021) for Bridge.

Bridge

On the matter of computer Bridge, besides the references mentioned before, a summary

of recent advances can be found in the PhD thesis by Bethe (2021, Section 2.3) or the

article by Khemani et al. (2018, Section 3). Recently, NukkAI, the sponsor behind this

PhD thesis, organised a challenge in which their Bridge robot (based on the algorithms

developed by Cazenave and Ventos (2020) and Cazenave et al. (2021)) won against 8

human Bridge champions in a restricted setting; see Rousset (2022, in French only) for

a technical overview of this achievement.

2.5. OPPONENT MODELS 13

Multi-objective games

A model that has very similar spirit and structure to games with one-sided incomplete

information and public actions is the one of multi-objective games. To compute robust

strategies for such games, Dasgupta et al. (1996) propose multi-objective game tree

search with alpha-beta-pruning-like optimisations. Their work is part of the book by

Dasgupta et al. (1999), which covers many other topics on multi-criteria optimisations

and decision-making, such as multi-objective path planning. A more recent monograph

on multi-objective decision-making is given by Roijers and Whiteson (2017).

2.5 Opponent models

Part of our work concerns the complexity of, and algorithms for, computing optimal

strategies when it is assumed that the opponents’ strategies are taken from a known,

restricted set. Such known strategies are referred to in the literature as opponent models.

Behavioural game theory concerns in particular models of human behaviour in games;

see Subsection 2.2.1.

Opponent models can come in diverse forms. Iida et al. (1993, 1994) propose

opponent models for games with perfect information, where models are given by the

evaluation function and the search depth of the opponent. Sturtevant et al. (2006)

propose opponent models given by opponent’s preferences over the outcomes of a game.

Rebstock et al. (2019) use opponent models learnt from human games for imperfect

information (card) games. A survey of opponent modelling approaches is also provided

by Albrecht and Stone (2018). Our work is related to these in the sense that we assume

opponent models to be given (called “type-based reasoning” by Albrecht and Stone

(2018, Section 4.2)). However, an important stream of work also studies the learning of

opponent models; we refer the reader to the survey by Nashed and Zilberstein (2022).

An important class of opponent models is that of recursive models, where MAX

searches a strategy (at level :) assuming that MIN themselves searches a strategy (at

level : − 1) assuming that MAX searches. . . , etc., down to level 0. Such models have

been studied in behavioural game theory (Dhami, 2019) to capture human reasoning.

For instance, Camerer et al. (2004) propose a cognitive hierarchy model in which an

opponent’s level is modelled by a Poisson distribution over levels : −1, . . . , 0; they also

validate this model against empirical data. Wright and Leyton-Brown (2019) assess

the relevance of various modelling assumptions for level 0. De Weerd et al. (2013)

assess the efficiency of reasoning with recursive models by simulation. Such recursive

models are also used in epistemic game theory to define notions such as common belief

in rationality (Perea, 2012).

Recursive models are also considered for cooperative planning. In particular, inter-

active POMDPs are a framework for collaborative decision-making in partially observed

environments (Gmytrasiewicz and Doshi, 2005; Doshi et al., 2020). In this model, a

level-: agent optimises their behaviour given a distribution over (partially observed)

physical states and over other agents’ models at level : − 1. Interestingly, optimal

behaviours at level : can be computed iteratively by solving a sequence of POMDPs,

where at each iteration the other agents’ model can be considered as part of the envi-

ronment. For human-agent collaboration, You et al. (2023) propose a recursive model

with bounded depth, whereby an agent plans (at level 2) a best response to a mixture

of possible strategies for a human, with these human strategies themselves defined (at

level 1) by planning assuming that the agent is controlled by the human (at level 0).

14 CHAPTER 2. RELATED WORK

Chapter 3

Background on game theory

In this chapter, we introduce notions from game theory that we will use throughout this

dissertation. The goal of this chapter is not to be an introduction to game theory, but to

fix the terminology and notation of the notions we will use. For (much) more details

on game theory, one can refer to the textbook by Maschler et al. (2020), on which most

of this chapter is based.

Furthermore, note that the definitions of relevant notions from graphs and sets are

given in the appendix (Section A.1 and Section A.3).

3.1 Games and strategies

In this section, we define the central subject of our work: extensive-form games. We

also define strategies and the solution concept of maxmin.

3.1.1 Extensive-form games

Games with perfect information

For pedagogical reason, we begin with the definition of extensive-form games (abbrevi-

ated as EFGs) with perfect information, which are special cases of EFGs with imperfect

information that will be introduced right after.

Definition 3.1.1 (EFG with perfect information). An extensive-form game with perfect

information is a tuple � = (), %, (+8)8∈% , D), where:

•) = (+, �, A) is a finite tree, called the game tree;

• % is a finite set, called the set of players;

• (+8)8∈% is a partition of the set of internal vertices + \ L());1

• D : L()) → R |% | is the utility function, which assigns to each leaf one real

number for each player in %, called the utility (or reward, or payoff) for the

player at the leaf.

1We use L()) to denote the set of all leaves of the tree); see Section A.1.

15

16 CHAPTER 3. BACKGROUND ON GAME THEORY

Throughout this dissertation, we use natural numbers to denote the players: % =

{1, 2, . . . , |% |}. When there are only two players, we also write % = {+,−} and call

them player MAX and player MIN, respectively. For 8 ∈ %, we also write D8 for the 8-th

component of D. Thus, D8 is the utility function of player 8.

Definition 3.1.2 (Decision maker). Let E ∈ + \ L()). If E ∈ +8 for a certain 8 ∈ %, we

say that E is a decision node of player 8, and 8 is said to be the decision maker of E.

Remark. Since (+8)8∈% is a partition of all internal vertices, each internal vertex E has

a unique decision maker.

EFGs are said to be in extensive-form because they model sequential interaction

among the players by a tree. In this dissertation, we are only interested in such games, the

game tree of which is either defined explicitly by the input or implicitly (and compactly)

by the game rules.

Informally, an EFG with perfect information is played in the following way. The

game begins at the root of the tree. Then, at each turn, the decision maker of the current

node chooses a child of that node, which will be the current node for the next turn. The

game proceeds in this way until a leaf is reached. Then each player receives a reward

determined by applying their utility function to this leaf. Such a game is said to be

with perfect information because every player, when it is their turn to make a decision,

knows perfectly the current node (and in particular its position in the game tree).

-

H T

+

(1,−1)

h

(0, 0)

t

+

(0, 0)

h′

(1,−1)

t′

Figure 3.1: Matching Pennies with perfect information.

Example. An example of EFG with perfect information is given in Figure 3.1. This

game has two players: MAX (+) and MIN (−). The decision maker of each internal

node is indicated by both a symbol representing the player and their form.2 The game

is called matching pennies since the goal of MAX is to match the side of a penny chosen

by MIN. For example, if MIN picks heads and so does MAX, then MAX receives 1 as

reward while MIN receives −1. On the other hand, if they choose different faces, then

both receive 0.

The semantics of this game is that MAX picks between heads and tails after observing

MIN’s choice. In particular, MAX knows where they are in the game tree when it is their

turn to make a decision. Hence, MAX can use the strategy “pick the child connected by

the edge labelled by h when MIN picks H, and pick t′ when MIN picks T”. to receive a

guaranteed payoff of 1, regardless of what MIN plays.

Remark. Notice that in the previous example, the reward for the players always sums

up to 0 at every leaf. A game with this feature is said to be zero-sum.

2Throughout this dissertation, nodes owned by MAX and MIN will be drawn as squares and cir-

cles/ellipses, respectively, in accordance with the standard practice in the literature.

3.1. GAMES AND STRATEGIES 17

Informally, a strategy of a player in an EFG with perfect information is a mapping

that assigns to each decision node of the player a child of that node; we postpone the

formal definition.

Chance moves can be incorporated into the current definition by introducing one

special player called Nature, who chooses its moves at each of its decision node with a

probability distribution that is common knowledge to all players. Again, we will see a

more formal definition later.

Games with imperfect information

For many decision-making problems that we desire to model as games, decision-makers

do not always have perfect information. To model this aspect, we need to introduce

the concept of information set, which is a way to express the idea that a player cannot

distinguish one situation from another.

Definition 3.1.3 (Information set and available actions). Let � = (), %, (+8)8∈% , D) be

a game in extensive form. An information set of player 8 ∈ % is a pair ⟨IS8 , �8⟩, where

• IS8 ⊆ +8 is a set of decision nodes of player 8 such that all vertices in IS8 have the

same number of children, denoted by 2;

• �8 = {01, . . . , 02}, called the set of available actions of player 8 at IS8 , is a

partition of the 2 |IS8 | children of the vertices in IS8 , such that for 1 ≤ 9 ≤ 2,
action 0 9 contains exactly one child of each of the vertices in IS8 .

In other words, each vertex from the same information set ⟨IS8 , �8⟩ has 2 children:

∀E ∈ IS8 , |C(E) | = 2;

and each of the 2 children of each vertex is labelled by a distinct action 0 from �8:

∀0 ∈ �8 ,∀E ∈ IS8 , |0 ∩ C(E) | = 1.

-

=1

l r

=2

l r

=3

l r

Figure 3.2: An example to illustrate the idea of information set. The rewards are omitted

for simplicity.

Example. In the game in Figure 3.2, the three nodes of MAX are in the same information

set, indicated by a bubble drawn by a dotted line. Formally, MAX has an information

set ⟨IS+, �+⟩, where IS+ = {=1, =2, =3}, (hence 2 = 2, meaning that each node in IS+
has exactly 2 children), and �+ = {l, r}, where l is the set of the left child of the nodes

in IS+, while r is the set of their right child (in particular, |l| = |r| = |IS+ | = 3).

Vertices from the same information set of a player are regarded as indistinguishable

by that player: when they are asked to make a decision, they are only informed that this

information set is reached, without knowing exactly which vertex is reached. We will

18 CHAPTER 3. BACKGROUND ON GAME THEORY

see later in the definition of strategies that a player can only choose one action at their

information set, which dictates the next node to be reached, depending on which vertex

in the information set the current node is. This allows us to impose the constraint that

a player cannot base their decision on the information they do not possess.

Armed with the notion of information set, we can define a more general class of

EFG.

Definition 3.1.4 (EFG with imperfect information). An EFG with imperfect information

is a tuple

� =

(
), %, (+8)8∈% , D,

(
⟨IS

9

8
, �

9

8
⟩
) 9=1,...,:8
8∈%

)
,

where:

•) = (+, �, A) is a finite game tree;

• % is a set of players;

• (+8)8∈% is a partition of + \ L());

• D : L()) → R |% | is a utility function;

• for each player 8 ∈ %,
(
⟨IS

9

8
, �

9

8
⟩
) 9=1,...,:8 is a set of information sets of player 8

such that (IS
9

8
) 9=1,...,:8 forms a partition of +8 .

In the following, we will abuse the language and refer to a set IS
9

8
as an information

set of player 8, leaving implicit the set �
9

8
of actions available at IS

9

8
. We denote the set

of all information sets of player 8 in an EFG with imperfect information by

IS8 ≔ {IS
1
8 , . . . , IS

:8
8
}.

We also emphasise that, by definition, the union of the sets in IS8 yields +8 , the set of

all decision nodes of player 8. Notice that the main difference between an EFG with

perfect information and one with imperfect information is that in the latter, each player’s

decision nodes are partitioned into their information sets.

-

H T

+

(1,−1)

h

(0, 0)

t

+

(0, 0)

h

(1,−1)

t

Figure 3.3: Matching Pennies.

Example. The EFG with imperfect information in Figure 3.3 is very similar to the

EFG with perfect information in Figure 3.1; the only difference is that in Figure 3.3,

MAX’s decision nodes are now in the same information set. Hence, the semantics of

this game is that MAX now chooses between heads and tails without observing MIN’s

choice. In that particular case, one can also imagine that MAX and MIN concurrently

or simultaneously pick their action. Notice that MAX can no longer guarantee a reward

of 1, since their information set imposes the constraint that they must choose either h

at both their decision nodes, or t at both.

3.1. GAMES AND STRATEGIES 19

Definition 3.1.5 (Perfect information). In an EFG with imperfect information, a player

8 ∈ % is said to have perfect information (PI) if every information set of 8 is a singleton.

In particular, an EFG with perfect information can be regarded as an EFG with

imperfect information in which all players have perfect information. Hence, in the

following, when we say EFG, we always mean EFG with imperfect information; when

we actually refer to an EFG with perfect information, we will say so explicitly.

3.1.2 Strategies and outcomes

We now define the notion of strategies and outcomes. Let

� =

(
), %, (+8)8∈% , D,

(
⟨IS

9

8
, �

9

8
⟩
) 9=1,...,:8
8∈%

)
be an arbitrary EFG with imperfect information in this and the following subsections.

Pure strategies

Definition 3.1.6 (Pure strategy). Let 8 ∈ % be a player in a game �. A pure strategy of

player 8 is a mapping

B8 : IS8 →
⋃

1≤ 9≤:8

�
9

8

such that for every information set IS
9

8
∈ IS8 , B8 (IS

9

8
) ∈ �

9

8
. The set of all pure strategies

of player 8 in the game � will be denoted by ΣP
8 .

In other words, a pure strategy of a player 8 maps each information set of player 8

to one of their available actions at that information set. We say that player 8 plays or

implements a pure strategy B8 ∈ ΣP
8 in the game if at every information set of player 8,

they pick the action prescribed by B8 at that information set.

Notice that since we only consider games with a finite game tree, the number of

pure strategies of a player is finite, although it can be extremely large (exponential in

the size of the game tree).

Definition 3.1.7 (Pure strategy profile). A pure (strategy) profile in a game� is a vector

containing one pure strategy for each player:

B = (B1, B2, . . . , B |% |) ∈

|% |∏
8=1

Σ
P
8 ,

where
∏

denotes the Cartesian product of sets. The set of all pure strategy profiles will

be denoted by ΣP.

Every pure strategy profile uniquely determines a traversal of the game tree and

the leaf to be reached. Let B = (B1, B2, . . . , B |% |) ∈ ΣP be a pure strategy profile. This

strategy profile determines a unique path from the root A to a leaf

E0 = A, E1, E2, . . . , E=−1, E= ∈ L())

such that for all : < =, E:+1 is the unique child of E: that is in the action chosen by

the decision maker 8 ∈ % of E: at their information set containing E: according to their

pure strategy B8 .
3 This well-defined path is called the playout under the profile B.

3More formally, let IS
9

8
∈ IS8 be the unique information set of 8 that contains E: and 0 = B8 (IS

9

8
) ∈ �

9

8

be the action chosen by player 8 at IS
9

8
under pure strategy B8 . Then E:+1 is the unique vertex in 0 ∩ C(E:) ,

which is a singleton set by the definition of an available action at an information set.

20 CHAPTER 3. BACKGROUND ON GAME THEORY

Definition 3.1.8 (Outcome). Let B ∈ ΣP be a pure strategy profile in a game � and

E0 = A, E1, E2, . . . , E=−1, E= ∈ L())

be the unique path from the root to a leaf determined by the profile in the aforementioned

way. Then the leaf E= is called the outcome of the game � under the strategy profile B.

For all 8 ∈ %, D8 (E=) is called the utility/reward/payoff for player 8 under B.

Hence, a utility function D uniquely defines a mapping from ΣP to R |% | , which we

will abusively denote by the same notation D. Hence, D(B) ≔ D(;), where ; ∈ L()) is

the outcome under B ∈ ΣP.

Mixed strategies

Definition 3.1.9 (Mixed strategy). Let 8 ∈ % be a player in a game�. A mixed strategy

of player 8 is a probability distribution over ΣP
8 , i.e. a mapping f8 : ΣP

8 → [0, 1] such

that ∑
B8∈Σ

P
8

f8 (B8) = 1.

The set of all mixed strategies of player 8 will be denoted by ΣM
8 .

We say that player 8 plays or implements a mixed strategy f8 ∈ Σ
M
8 in the game, if

they choose a pure strategy B8 ∈ ΣP
8 according to the probability distribution f8 , then

play B8 in the game. Notice that pure strategies can be regarded as special cases of

mixed strategies (by which a player chooses a certain pure strategy with probability 1).

Definition 3.1.10 (Mixed strategy profile). A mixed (strategy) profile in a game � is a

vector containing one mixed strategy for each player:

f = (f1, f2, . . . , f|% |) ∈

|% |∏
8=1

Σ
M
8 .

The set of all mixed strategy profiles will be denoted by ΣM.

By definition, the set of all mixed strategies is the simplex of the set of all pure

strategies: ΣM
8 = Δ(ΣP

8). For profiles, we can also view ΣM as a subset of Δ(ΣP) since a

mixed strategy profile f = (f1, f2, . . . , f|% |) ∈ ΣM induces a probability distribution

over the set of pure strategy profiles ΣP in the following way: for all pure strategy

profiles B = (B1, B2, . . . , B |% |) ∈ Σ
P, we can abuse the notation and write

f(B) ≔
∏
8∈%

f8 (B8).

Then
∑

B∈ΣP f(B) = 1, hence f is a probability distribution over ΣP. In particular,

this means f induces a probability distribution over the outcomes of the game (i.e. the

reachable leaves).

Remark. Note that ΣM is a strict subset of Δ(ΣP). For example, consider f =
1
2
(B+, B−) +

1
2
(B′+, B

′
−) with B8 , B

′
8 ∈ Σ

P
8 for 8 ∈ {+,−}, which intuitively means for half of

the time MAX plays B+ while MIN plays B− , and another half of the time MAX plays B′+
while MIN plays B′− . Then f is an element of Δ(ΣP) but not an element of ΣM, since

under no mixed strategy of MAX and MIN can they achieve the perfect coordination

in f. The difference between ΣM and Δ(ΣP) is essentially the difference between the

solution concepts TME and TMECor; see Celli and Gatti (2018) and other references

about team games in Subsection 2.2.2.

3.1. GAMES AND STRATEGIES 21

Viewing ΣM as a subset of Δ(ΣP), we define the notion of expected utility.

Definition 3.1.11 (Expected utility). Let f ∈ ΣM ⊊ Δ(ΣP) be a mixed strategy profile.

Then the expected utility/reward/payoff for player 8 under f, denoted by U8 (f), is

defined to be

U8 (f) ≔
∑
B∈ΣP

f(B)D8 (B).

In other words, the expected utility for a player under a mixed profile is the expecta-

tion of their utility if every player randomly chooses a pure strategy (to play throughout

the game) according to the probability distribution represented by their mixed strategy

in the profile.

Behaviour strategies

Instead of mixing pure strategies of a player, we may also consider mixing their choice

of actions at each of their information sets. This yields a new notion of strategy.

Definition 3.1.12 (Behaviour strategy). Let 8 ∈ % be a player in a game�. A behaviour

strategy of player 8 is a mapping

c8 : IS8 →
⋃

1≤ 9≤:8

Δ(�
9

8
)

such that for every information set IS
9

8
∈ IS8 , c8 (IS

9

8
) ∈ Δ(�

9

8
). The set of all behaviour

strategies of player 8 in the game � will be denoted by ΣB
8 .

We say that player 8 plays or implements a behaviour strategy c8 ∈ Σ
B
8 in the game,

if at every information set of player 8, they pick their actions randomly according to

the probability distribution prescribed by c8 at that information set. Notice that pure

strategies can be regarded as special cases of behaviour strategies (by which a player

chooses, at every information set, a certain action available at this information set with

probability 1).

Definition 3.1.13 (Behaviour strategy profile). A behaviour (strategy) profile in a game

� is a vector containing one behaviour strategy for each player:

c = (c1, c2, . . . , c |% |) ∈

|% |∏
8=1

Σ
B
8 .

The set of all behaviour strategy profiles will be denoted by ΣB.

Like a mixed strategy profile, a behaviour strategy profile also induces a probability

distribution over the outcomes of the game; hence we can define the expected util-

ity/reward/payoff for a player under a behaviour strategy profile as the expectation of

the utility/reward/payoff for the player under this induced probability distribution over

the outcomes. We will not detail the construction here, see for example Maschler et al.

(2020, Chapter 6).

22 CHAPTER 3. BACKGROUND ON GAME THEORY

Recapitulation of notation

We will consistently use the following notation throughout this dissertation.

• The set of pure/mixed/behaviour strategy profiles is denoted by ΣP, ΣM, ΣB,

respectively. An arbitrary pure/mixed/behaviour strategy profile is denoted by B,

f, c, respectively.

• When the type of strategies (pure/mixed/behaviour) under consideration is un-

specified or inessential, we suppress the superscript and simply write Σ for the

set of profiles and e for an arbitrary profile.

• For a set of profiles (with or without superscript), a subscript 8 ∈ % indicates the

set of strategies of player 8 (e.g. ΣP
8), and −8 indicates the set of profiles for all the

other players4 (e.g. ΣP
−8). For example, we have

Σ =

|% |∏
9=1

Σ 9 � Σ8 × Σ−8 ,

which holds for all 8 ∈ % and all superscripts.

• For an arbitrary (pure/mixed/behaviour) strategy profile, a subscript 8 ∈ % indi-

cates the strategy of player 8 in this profile (e.g. c8), and −8 indicates the strategy

profile for all the other players in this profile (e.g. c−8).

• A utility function D : L()) → R |% | uniquely defines an expected utility function

on the set of pure/mixed/behaviour strategy profiles, which we denote by U in

all cases.5

3.1.3 Games of chance

Real-life games can contain various sources of randomness and chance factors, such

as dice rolls, coin flips, cards shuffles, etc. To model such random events, we may

introduce a special player called Nature, who owns some internal nodes of a game tree,

called chance nodes. The idea is that at each chance node, the successor is chosen (by

Nature) according to some probability distribution that is common knowledge among

the players (i.e. everybody knows the distribution, and everybody knows everybody else

knows the distribution, ad infinitum). In addition, the drawing of successors at each

chance node should be independent.

To this end, Nature, a player that we will represent by the index 0, should have

perfect information in the game and implement a behaviour strategy that is common

knowledge to all other players. Hence, the following definition.

Definition 3.1.14 (EFG of chance and of no chance). An EFG of chance (and with

imperfect information) is a tuple

� =

(
), %, (+8)8∈{0}∪% , (?E)E∈+0

, D,
(
⟨IS

9

8
, �

9

8
⟩
) 9=1,...,:8
8∈%

)
,

where:

4They are also referred to as the opponents or adversaries of player 8.
5Since pure strategy profiles can also be interpreted as mixed strategy profiles, U is well-defined on pure

strategy profiles.

3.1. GAMES AND STRATEGIES 23

•) = (+, �, A) is a finite game tree;

• % is a set of (non-Nature) players;

• (+8)8∈{0}∪% is a partition of + \ L());

• for every E from the set +0 (called the set of chance nodes), ?E is a probability

distribution over the children of E: ?E ∈ Δ(C(E));

• D : L()) → R |% | is a utility function;

• for each player 8 ∈ %,
(
⟨IS

9

8
, �

9

8
⟩
) 9=1,...,:8 is a set of information sets of player 8

such that (IS
9

8
) 9=1,...,:8 forms a partition of +8 .

If a game has no chance node (i.e. +0 = ∅), it is called an EFG of no chance.

Hence, by definition, games of no chance form a strict subclass of games of chance.

0
? =

1
2

1 − ? =
1
2

-

H T

+

(1,−1)

h

(0, 0)

t

+

(0, 0)

h

(1,−1)

t

-

H′ T′

+

(0, 0)

h′

(1,−1)

t′

+

(1,−1)

h′

(0, 0)

t′

Figure 3.4: Random Matching Pennies.

Example. The EFG of chance in Figure 3.4 has only one chance node, the root, at

which Nature chooses uniformly at random between the left and right branches. If

the left branch is chosen, then MAX and MIN play the game Matching Pennies (cf.

Figure 3.3); otherwise, they play the version of Matching Pennies with reward inverted

(hence MAX should not match MIN’s choice).

Remark. Notice that in the previous example, the choice of Nature is observable by

both players, since no player has an information set that contains vertices in both the

subgames. In general, this needs not be the case; the choice of Nature at a chance node

can be revealed only to some players or to none at all.

EFG of chance (with imperfect information) is the most general model of games

in extensive form that we will consider. In the following, we regard both EFGs of no

chance and EFGs with perfect information as degenerate cases of EFGs of chance. In

addition, we simply say game for EFG of chance, when there is no danger of confusion.

Moreover, Definition 3.1.14 only serves as a reference; in the following, we will not

describe a game in this cumbersome notation, but rather by giving a figure of it (e.g.

Figure 3.4) or by describing the gameplay.

24 CHAPTER 3. BACKGROUND ON GAME THEORY

3.1.4 The solution concept of maxmin

Definition 3.1.15 (Maxmin value). The maxmin value for player 8 in a game � with

respect to a set of strategies Σ8 of player 8 and a set of profiles Σ−8 of their opponents

is defined to be

E
8
(Σ8 , Σ−8) ≔ max

e8∈Σ8

min
e−8∈Σ−8

U8 (e8 , e−8).

Maxmin is a security/robustness concept: E
8
(Σ8 , Σ−8) tells us the largest payoff that

player 8 can guarantee by playing a strategy in Σ8 , when their opponents’ strategy profile

ranges over Σ−8 .

Definition 3.1.16 (Best response and maxmin strategy). Let e∗8 ∈ Σ8 and e∗−8 ∈ Σ−8 .

• e∗−8 is called a best response to e∗8 in Σ−8 , if

U8 (e
∗
8 , e
∗
−8) = min

e−8∈Σ−8
U8 (e

∗
8 , e−8).

• e∗8 is called an optimal strategy or a maxmin strategy in Σ8 against Σ−8 , if e∗8
achieves the maxmin value E

8
(Σ8 , Σ−8), i.e.

min
e−8∈Σ−8

U8 (e
∗
8 , e−8) = E8 (Σ8 , Σ−8).

The maxmin value for player 8 depends on the set of strategies we allow them to

implement. In addition, this value is increasingly monotone on its first argument Σ8

(with respect to set inclusion). Usual choices for Σ8 are given by ΣP
8 , ΣM

8 , ΣB
8 , for which

the maxmin is named pure/mixed/behaviour maxmin. In our dissertation, we mostly

focus on pure maxmin.

Similarly, the maxmin value depends and is decreasingly monotone on its second

argument Σ−8 , the set of strategy profiles allowed for the opponents of player 8. The

largest such set we will consider is ΣM
−8 , the set of profiles formed by all combinations

of the other players’ mixed strategies.

Zero-sum games

Games with only two players (not counting Nature, i.e. |% | = 2) are called two-player

games. In a two-player game, we write % = {+,−} and call + player MAX and − player

MIN.

Definition 3.1.17 (Zero-sum). A two-player game is said to be zero-sum if D+ +D− = 0.

In other words, a zero-sum game is a game in which the two players have opposite

payoffs at every leaf (hence for every outcome): what one gains is equal to what the

other loses. Hence, zero-sum games are completely competitive and adversarial.

Zero-sum assumption for maxmin

Notice that in a game, the maxmin value E
8

of player 8 depends solely on U8 , and is

completely independent of U 9 for 9 ≠ 8. Hence, when studying the maxmin value of

a two-player game, we can always assume without loss of generality that the game is

zero-sum.

3.2. INFORMATION IN EFGS 25

Furthermore, notice that this means the maxmin strategies of a player are computed

without considering the other players’ utilities, and a fortiori their reasoning or ratio-

nality. This is a defining feature of the solution concept of maxmin: it is inherently

egocentric and only serves the purpose of guaranteeing one’s own best payoff, no matter

how other players react.

In this dissertation, we are mainly interested in the solution concept of maxmin

for two-player games. Hence, without explicit mention, all games we consider will be

two-player zero-sum games.

Boolean games

A particular subclass of zero-sum games is Boolean games.

Definition 3.1.18 (Boolean game). A zero-sum game is said to be a Boolean game if

∀; ∈ L()), D+ (;) ∈ B = {0, 1}.

Remark. The values 0 and 1 are actually inessential; one can choose any two constants:

what captures the essence of Boolean games is that there are only two possible payoff

values for MAX.

In a Boolean game, 1 as reward usually signifies a win for player MAX (and a loss

for player MIN), and 0 signifies a loss for player MAX (and a win for player MIN). In

particular, if the maxmin value for MAX in a game is 1, this means MAX can force a

win, no matter how Nature draws at chance nodes and how MIN plays; if the maxmin

value for MAX is 0, then MIN can force a loss for MAX.

Boolean game is one of the most studied subclass. Traditionally, Boolean games of

no chance and with perfect information are called combinatorial games, which is the

subject of a vast and rich field of research in both mathematics and computer science;

see references about combinatorial game theory in Subsection 2.2.3.

3.2 Information in EFGs

In this section, we briefly study how notions about information6 are implicitly encoded

by the structure of the information sets of the players in an EFG. In particular, we

present the notions of perfect recall and multi-agent perfect recall (team games). The

treatment here will not be fully rigorous, since our main goal is to give an intuition

about these notions. Readers can refer to Maschler et al. (2020) for all missing details.

In the following, we consider � to be an arbitrary EFG of chance.

3.2.1 Perfect recall

Recall that pure strategies are special cases of both mixed strategies and behaviour

strategies. On the other hand, the relationship between mixed and behaviour strategies

is less straightforward and will be the subject of this subsection.

6By “information”, we informally refer to what actions in the past a player can observe or retain in memory.

26 CHAPTER 3. BACKGROUND ON GAME THEORY

Equivalence of strategies

Consider a profile of mixed and behaviour strategies

e∈

|% |∏
8=1

(ΣM
8 ∪ Σ

B
8),

i.e. for all 8 ∈ %, e8 is either a mixed strategy or a behaviour strategy of player 8.

If each player 8 implements their strategy e8 , their drawings of pure strategies (when

implementing a mixed strategy) and drawings of actions at every information set (when

implementing a behaviour strategy) induce a probability distribution ?(·; e) : + →
[0, 1] over the vertices of the game tree; for E ∈ + , ?(E; e) is the probability that E

will be visited if the players implement the profile e . Such a probability distribution is

called realisation probability under the strategy profile e .

Remark. We could have defined the expected utility U for a player 8 ∈ % under a

profile e by

U8 (e) ≔
∑

;∈L())

?(;; e)D8 (;),

thereby unifying the notion of expected utility for both mixed and behaviour (hence also

pure) profiles.

Definition 3.2.1 (Outcome equivalence). A mixed strategy f8 and a behaviour strategy

c8 of player 8 are said to be (outcome) equivalent if for all profiles e−8 ∈
∏

9≠8 (Σ
M
9 ∪Σ

B
9)

of the players in %\{8}, the realisation probability is the same under the profile (f8 , e−8)
and under the profile (c8 , e−8):

∀E ∈ +, ?(E; (f8 , e−8)) = ?(E; (c8 , e−8)).

Mixed strategies without equivalent behaviour strategies

A mixed strategy does not always have an equivalent behaviour strategy. For example,

consider the game in Figure 3.5: MAX chooses an action without remembering which

one, then chooses a second action. In this game, the mixed strategy 1
2
Hh+ 1

2
Tt (a perfect

coordination between MAX’s first and second actions) has no equivalent behaviour

strategy. Indeed, under this mixed strategy, the leaves ;Hh and ;Tt will both be reached

with probability 1
2
. When using behaviour strategies, to reach ;Hh with a non-zero

probability, MAX must pick H at the root and h at the children of the root with a

non-zero probability; likewise for T and t. But in this case, the leaves ;Ht and ;tH will be

reached with a non-zero probability.

From this example, one can see that in some games, mixed strategies give a player

more power than they should have: by implementing a mixed strategy, they can some-

times pick different actions at different vertices in the same information set, based on

what they have done in the past. This clearly contradicts our intuition of what an

information set should mean; see also the discussion by Koller and Megiddo (1992,

Section 2.1).

Behaviour strategies without equivalent mixed strategies

On the other hand, it is also possible that a behaviour strategy does not have any

equivalent mixed strategy. For example, consider the game in Figure 3.6: MAX

3.2. INFORMATION IN EFGS 27

+

H T

+

;Hh

h

;Ht

t

+

;Th

h

;Tt

t

Figure 3.5: A game with a mixed strategy that has no equivalent behaviour strategy.

The rewards are omitted for simplicity.

chooses an action without remembering the fact that they have chosen an action, then

chooses a second action. In this game, the behaviour strategy 1
2
H+ 1

2
T has no equivalent

mixed strategy. Indeed, under this behaviour strategy, the leaf ;HT will be reached with

probability 1
4
. On the other hand, ;HT cannot be reached by any pure strategy (H or

T), which means no mixed strategy allows MAX to reach it with non-zero probability.

Notice that despite having no equivalent mixed strategy, this behaviour strategy indeed

respects the informational constraints on MAX in the game.

+

H

;T

T

+

;HH

H

;HT

T

Figure 3.6: A game with a behaviour strategy that has no equivalent mixed strategy.

The rewards are omitted for simplicity.

Perfect recall and Kuhn’s theorem

We now state necessary and sufficient conditions on a game for all mixed strategies to

have an equivalent behaviour strategy, and vice versa. For their proofs, one may refer

to Maschler et al. (2020, Chapter 6) or to the original work by Kuhn (1953).

Theorem 3.2.2. (Maschler et al., 2020, Theorem 6.11) In a game �, every behaviour

strategy of player 8 has an equivalent mixed strategy if and only if no information set of

player 8 is intersected twice by a path starting from the root.

Remark. Notice how the game in Figure 3.6 violates this necessary condition: the

path from the root to the leaf ;HH intersects twice the only information set of MAX in

the game.

For behaviour strategies to be expressive enough so that every mixed strategy has

an equivalent behaviour strategy, one needs a stronger condition called perfect recall.

Definition 3.2.3 (Player with perfect recall). A player 8 is said to have perfect recall

(PR) in a game � if every two paths starting from the root and arriving at the same

information set of player 8 pass through the same information sets of player 8 and in the

28 CHAPTER 3. BACKGROUND ON GAME THEORY

same order, and the same action is chosen by the two paths at each such information

set.

Definition 3.2.4 (Game with Perfect Recall). A game � is said to be with perfect recall

if all players have perfect recall.

Notice that perfect information implies perfect recall. Hence, games with perfect

information form a subclass of games with perfect recall.

Remark. The perfect recall of a player implies that no information set of the player is

intersected twice by any path from the root: otherwise, there are two paths arriving in

such an information set, so that one path only passes through this information set once,

while another passes through twice, contradicting the perfect recall of the player.

Remark. Notice how the game in Figure 3.5 violates perfect recall: there are two

different paths from the root arriving at the information set containing the two children

of the root; MAX has taken action H in one path, but action T in the other.

Intuitively, perfect recall implies that a player never forgets anything they knew in

the past: two paths passing through different sequences of information sets cannot end

in the same information set, hence if the player can distinguish two of their decision

nodes E and E′, then they will not confound a descendant of a E with one of E′. In

addition, the player remembers the actions they have chosen in the past, since taking

different actions at the same information set will lead to different information sets.

Hence, a player with perfect recall always remembers what they saw and did in the past.

Theorem 3.2.5. (Kuhn, 1953) In a game �, every mixed strategy of player 8 has an

equivalent behaviour strategy if and only if player 8 has perfect recall.

3.2.2 Multi-agent perfect recall

The necessary and sufficient condition for every behaviour strategy to have an equivalent

mixed strategy in Theorem 3.2.2, which is weaker than perfect recall, has a very natural

interpretation; let us first give it a proper name.

Definition 3.2.6 (Multi-agent perfect recall). A player 8 is said to have multi-agent

perfect recall (MA-PR) in a game � if no information set of player 8 is intersected twice

by a path starting from the root.

Motivation

The term multi-agent is motivated by the fact that if the condition in Definition 3.2.6 is

satisfied, then player 8 can be regarded as a team of multiple agents with perfect recall

and a shared reward, each agent controlling one of the information sets of player 8.

Conversely, agents with perfect recall and identical payoffs can be regarded as being

controlled by a meta-player who has multi-agent perfect recall.

This multi-agent interpretation of the condition in Definition 3.2.6 dates back to

von Stengel and Koller (1997), and is widely adopted in recent research on team games

(Basilico et al., 2017; Celli and Gatti, 2018, for instance). In the literature, a team

is defined to be an inclusion-wise maximal set of players with perfect recall and the

same utility function; and recent research focuses on the computational complexity or

3.2. INFORMATION IN EFGS 29

algorithms for solution concepts such as TME and TMECor in two-team games with

perfect recall;7 see the references in Chapter 2 on this subject.

As the notion of two-player games with multi-agent perfect recall and the one of two-

team games with perfect recall are equivalent, we use these two notions interchangeably

throughout this dissertation; we prefer using the first term in order to say that we focus

exclusively on two-player games. From now on, to avoid potential confusion, a player

means a team with zero, one, or more agents with perfect recall and a common utility

function who take decisions in a completely decentralised manner.8 Since by definition

all agents of a player (i.e. in the same team) have the same payoffs, we only show the

rewards for player MAX and player MIN in all our examples of two-player EFGs.

Concurrent actions and non-adaptivity

The notion of multi-agent perfect recall (or team) allows constructing EFGs that model

concurrent actions, which are useful for proving complexity results. By concurrent

actions, we mean situations in which each agent in the same team has to make decisions

concurrently and independently, without knowing which action the others have taken.

We use the word concurrent instead of simultaneous to emphasise that the chronological

order of the actions of the agents is irrelevant to the game; when modelling such

situations with EFG, we can allow agents to take turn in any order.

1

H1 T1

2

1

H2

0

T2

2

0

H2

1

T2

2

H2 T2

1

1

H1

0

T1

1

0

H1

1

T1

Figure 3.7: Cooperative Matching Pennies.

Example. Consider the games in Figure 3.7, which we have already seen in Figure 3.5

without showing the payoffs. In these games called cooperative Matching pennies, we

have a team MAX of 2 agents and a team MIN of 0 agent. Notice that on the left, we let

agent 1 move first, but this is inessential; we may as well let agent 2 move first as on the

right, which yields another EFG with the same game tree but with different partitions

by information sets. These two games model the same situation, in which agent 1 and

agent 2 have to pick between heads and tails concurrently and independently.

Notice that in these two games, the only pure or behaviour strategies of team MAX

to guarantee a win (i.e. a payoff of 1), are to let both agent 1 and agent 2 choose heads,

or to let them both choose tails. Furthermore, notice that if the two agents have access

to a correlation device so that they can coordinate in their mixed strategies, then they

can implement a mixture of the two pure strategies above to guarantee a win; this is the

problem setting for the solution concept of TMECor (Basilico et al., 2017; Celli and

Gatti, 2018).

Notice how concurrent actions in the example above allow imposing non-adaptivity:

both agents of MAX must stick to the same answer, otherwise they lose. This is

7In our terminology, TME and TMECor are referred to as behaviour maxmin and mixed maxmin,

respectively.
8In particular, this means we study the notion of (pure or behaviour) TME instead of TMECor.

30 CHAPTER 3. BACKGROUND ON GAME THEORY

essentially how multi-agent perfect recall is used to encode difficult (e.g. NP-hard)

decision problems.

For instance, consider a 3-colouring game, in which MIN can ask each agent of

MAX about their colouring for a vertex.9 If the two agents of MAX see each other’s

response (which is roughly equivalent to saying that player MAX has perfect recall

instead of just multi-agent perfect recall), then the second agent can pick their response

according to the response of the first player. On the other hand, if MIN asks them

concurrently and independently (e.g. in the same manner as in the games in Figure 3.7),

then since the two agents cannot communicate, they have no way to know whether they

are asked about the same vertex or not. In particular, the two agents of MAX have to

agree on a colour for each vertex so as to avoid a payoff of 0 in case MIN asks them

about the same vertex. But this common 3-colouring also has to be a legal colouring so

as to avoid a payoff of 0 in case MIN asks them about vertices connected by an edge.

Remark. This technique of forcing non-adaptivity is also used to prove that multi-prover

interactive proofs are more powerful than single-prover ones (Babai et al., 1991), or

that multi-agent planning is computationally more difficult than single-agent planning

(Bernstein et al., 2002; Brafman et al., 2013). In this dissertation, we will show similar

results concerning multi-agent games with the same technique.

Best responses for a player with multi-agent perfect recall

Recall that the maxmin value for MAX in a two-player game � with respect to a set of

strategies Σ+ of MAX and a set of profiles Σ− of MIN is defined to be

E+ (Σ+, Σ−) ≔ max
e+∈Σ+

min
e−∈Σ−

U+ (e+, e−).

We will show that it makes no difference whether we choose Σ− to be ΣP
− , or ΣB

− , or

ΣM
− , if MIN has multi-agent perfect recall.

Proposition 3.2.7. Let e+ ∈ ΣM
+ ∪ ΣB

+ . Then there exists B∗− ∈ ΣP
− with U+ (e+, B

∗
−) =

minf−∈ΣM
−
U+ (e+, f−), i.e. B∗− is a best response to e+ in ΣM

− .

Proof. Let f∗− and B∗− be two best responses to e+ in ΣM
− and ΣP

− , respectively. Then by

the definition ofU+ over mixed profiles, we have

U+ (e+, f
∗
−) =

∑
B−∈ΣP

−

f∗− (B−)U+ (e+, B−) ≥
∑

B−∈ΣP
−

f∗− (B−)U+ (e+, B
∗
−) = U+ (e+, B

∗
−).

Hence,U+ (e+, f
∗
−) ≥ U+ (e+, B

∗
−) holds, that is, B∗− ∈ Σ

P
− is at least as good a response

to e+ as f∗−; the converse U+ (e+, f
∗
−) ≤ U+ (e+, B

∗
−) follows directly from ΣP

− ⊆ ΣM
−

and the definition of a best response in a set of strategies. □

Corollary 3.2.8. If MIN has multi-agent perfect recall, then for all subsets Σ+ ⊆
ΣM
+ ∪ ΣB

+ , we have E+ (Σ+, Σ
P
−) = E+ (Σ+, Σ

B
−) = E+ (Σ+, Σ

M
−).

Proof. Since pure strategies are special cases of behaviour strategies, and since ev-

ery behaviour strategy of MIN has an equivalent mixed strategy (because MIN has

multi-agent perfect recall), we have E+ (Σ+, Σ
P
−) ≥ E+ (Σ+, Σ

B
−) ≥ E+ (Σ+, Σ

M
−), and by

Proposition 3.2.7, all inequalities are equalities. □

9See the proof of Proposition 4.2.8 for more details.

Part II

Contributions

31

Chapter 4

Complexity of pure maxmin in

extensive-form games

4.1 Introduction

In this chapter, we study the complexity of finding optimal pure strategies in two-player

EFGs. This work is motivated by Koller and Megiddo (1992), who establish many

positive and negative complexity results concerning maxmin values. However, their

study does not systematically cover all relevant subclasses of EFGs. Hence, we extend

their study by filling the gaps and strengthening some of their results; in doing so, we

provide the first relatively complete landscape for the complexity of pure maxmin.

Common problem setting for the chapter

The games we consider in this chapter will be two-player EFGs. As we have shown in

Subsection 3.1.4, we can assume without loss of generality that all games we consider

are zero-sum.

We will allow MAX and MIN to have different degrees of imperfect information:

perfect information, perfect recall, multi-agent perfect recall (i.e. team games). The

only case we do not consider is the one in which a player does not even have multi-

agent perfect recall (e.g. the player MAX in Figure 3.6 on page 27). This case is

generally referred to as imperfect recall (which, unfortunately, is not precise enough) or

absent-mindedness (Piccione and Rubinstein, 1997). For the computational complexity

of single-player EFGs with absent-mindedness, see the recent work by Gimbert et al.

(2020) and Tewolde et al. (2023).

Organisation of the chapter

This chapter is organised as follows.

• In Section 4.2, we investigate the complexity of the decision problem Pure

Maxmin, i.e. deciding whether MAX can guarantee a certain payoff by using

only pure strategies. Different subclasses of two-player EFGs of chance are

considered, parameterised by MAX’s and MIN’s degree of imperfect information,

and the existence of chance.

33

34CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

• After establishing the complete complexity landscape for Pure Maxmin for

EFGs, we pursue in three orthogonal directions.

– In Section 4.3, we investigate the same problem, but for EFGs that are com-

pactly represented. We propose two formalisms for compactly represented

games: compact Boolean games and oracle games. Compact Boolean

games aim to generalise minimally QBF and DQBF (proposed by Peterson

et al. (2001)) so as to allow MIN to be multi-agent; Oracle games aim to

be as general as possible, while respecting some computability criteria, so

as to capture tabletop1 or video games that humans play, which are usually

described by game rules.

– In Section 4.4, we investigate the problem of finding optimal pure strategies

for MAX in EFGs when the strategies of MIN are restricted to a small

subset (called opponent models) known by MAX.

– In Section 4.5, we investigate two other variants of Pure Maxmin for EFGs,

in which we decide whether the pure maxmin value is at most or exactly a

given threshold, respectively.

• We then conclude our investigations on this matter by comparing our results

with results in the literature on behaviour maxmin, and discussing some possible

future work.

4.2 Complexity of EFGs

In this section, we study the complexity of deciding whether the pure maxmin value of

a given zero-sum EFG is above a given threshold, when the game tree of the EFG is

explicitly given in the input.

Definition 4.2.1 (Pure Maxmin). Let G be a class of zero-sum EFGs. Then Pure

Maxmin(G) is the following decision problem.

Input An EFG � ∈ G and a rational number <.

Output Decide whether E+ (Σ
P
+, Σ

P
−) ≥ < holds in �.

For complexity analyses, to account for the explicit representation of the game, we

define the size of an instance ⟨�, <⟩ of Pure Maxmin to be ∥�∥ + ∥<∥, where for a

rational number <, we define ∥<∥ to be the number of bits in the representation of <,

and for an EFG of chance

� ≔

(
), {+,−}, (+8)8∈{0,+,−} , (?E)E∈+0

, D,
(
⟨IS

9

8
, �

9

8
⟩
) 9=1,...,:8
8∈{+,−}

)
,

we define

∥�∥ ≔ |) | + max
;∈L())

(∥D+ (;)∥) + max
E∈+0 ,E′∈C(E)

(∥?E (E
′)∥).

We will study the complexity of Pure Maxmin for the classes G defined by three

parameters:

1Tabletop games include board games (e.g. Chess, Backgammon, Go), card games (e.g. Bridge, Poker,

Hearts), dice games (e.g. Yahtzee), tile-based games (e.g. Mahjong, Dominoes), tabletop role-playing games

(e.g. Dungeons & Dragons), strategy games (e.g. wargames), etc.

4.2. COMPLEXITY OF EFGS 35

• MAX’s degree of imperfect information: perfect information (PI), perfect recall

(PR), or multi-agent perfect recall (MA-PR);

• MIN’s degree of imperfect information: PI, PR, or MA-PR;

• the existence of chance nodes: games of no chance, or of chance.

Notice that we are interested in maxmin values with respect to all MIN’s pure

strategies ΣP
− , which is equivalent to considering all behaviour or mixed strategies of

MIN for all subclasses of games we consider, by Corollary 3.2.8.

Moreover, we can further simplify the analysis for games of no chance. Given

an EFG � of no chance, let PIMIN (�) be the EFG of no chance obtained from � by

replacing the set of information sets of MIN by the set of all singleton nodes. Then, in

PIMIN (�), the game tree, the payoff functions, MAX’s information sets, and the set of

MAX’s pure strategies are the same as in �, but MIN has perfect information.

Lemma 4.2.2. Let � be an EFG of no chance in which MIN has multi-agent perfect

recall. Then the pure maxmin value for MAX in� is the same as the pure maxmin value

for MAX in PIMIN (�).

Proof. First, since MIN has no fewer strategies in PIMIN (�) than in � (since in

PIMIN (�) MIN can choose different actions at nodes in the same information set

of �), the maxmin value for MAX cannot be strictly higher in PIMIN (�) than in �.

Conversely, let B+ ∈ Σ
P
+, B
′
− ∈ Σ

P
− be pure strategies for MAX and MIN, respectively,

in PIMIN (�). The pure strategy profile (B+, B
′
−) in PIMIN (�) uniquely determines a

playout of the game. Since MIN has MA-PR in�, this path intersects every information

set of MIN in � at most once. Hence, one can define a pure strategy B− for MIN in �

such that at every decision node of MIN in the path, MIN takes the same action as in

B′− .2 By construction, the playout is the same under the pure strategy profile (B+, B−)
in � as under (B+, B

′
−) in PIMIN (�), hence the utility for MAX is the same. It follows

that the pure maxmin value for MAX cannot be strictly higher in � than in PIMIN (�),
which concludes the proof. □

Since PIMIN (�) can clearly be built in polynomial time from �, it follows that for

every fixed degree of imperfect information of MAX, the degree of imperfect informa-

tion of MIN (PI, PR, or MA-PR) does not influence the complexity of Pure Maxmin

for EFGs of no chance.

4.2.1 Summary of results

The complexity of Pure Maxmin(G) is summarised in Table 4.1. By definition,3

the complexity of each case is increasingly monotone in all three parameters: MAX’s

degree of imperfect information (in this order: PI, PR, MA-PR), MIN’s degree of

imperfect information, and the existence of chance nodes (in this order: no chance,

chance). Hence, Table 4.1 only gives the references for the key hardness (“h”) and

membership (“m”) results; the other results can be deduced using monotonicity. Note

that results written in bold font are new from our work; the others can be directly

deduced from the literature.

2Concretely, at an information set IS− of MIN in�, if IS− intersects exactly once the playout in PIMIN (�)
under (B+, B

′
−) , then B− (IS−) is defined to be the action picked by MIN under B′− in PIMIN (�) at the unique

intersection of IS− and the playout; otherwise, if IS− does not intersect the playout, then B− (IS−) can be

defined to be any available action at IS− .
3Recall that, for instance, a game of no chance is a game of chance; a game with perfect information is a

game with perfect recall.

36CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

No chance Chance

MAX

MIN
PI/PR/MA-PR PI PR MA-PR

PI P P [m: 4.2.9] NP-c [h: 4.2.10] �
P

2
-c [h: 4.2.12]

PR P [m: 4.2.4] NP-c [h: 4.2.11] NP-c �
P

2
-c

MA-PR NP-c [h: 4.2.8] NP-c NP-c [m: 4.2.3] ΣP
2
-c [m: 4.2.14]

Table 4.1: Complexity of Pure Maxmin. All hardness results hold even under the

restriction to Boolean games with at most 2 agents for both MAX and MIN.

4.2.2 EFG of no chance

Koller and Megiddo (1992, Section 3.3) show that if MIN has perfect recall or there

is no chance, then for all pure strategies of MAX, a best response for MIN can be

computed in linear time. This gives an upper bound of NP for most cases in Table 4.1.

Proposition 4.2.3. Pure Maxmin is in NP for EFGs of no chance in which MAX and

MIN have MA-PR, and for EFGs of chance in which MAX has MA-PR and MIN has

PR.

Proof. One can guess a pure strategy B+ for MAX, then verify that it yields an expected

payoff no less than the given threshold, by computing a best response to B+ for MIN,

which can be done in linear time when MIN has PR or there is no chance (Koller and

Megiddo, 1992, Section 3.3). □

When MAX has perfect recall, we show that the problem is actually in P.

Proposition 4.2.4. Pure Maxmin is decidable in linear time, and a fortiori is in P, for

EFGs of no chance in which MAX has PR and MIN has MA-PR.

For the proof, we introduce the notion of reachability in games of no chance.

Definition 4.2.5 (Reachability). Let B+ ∈ ΣP
+ be a pure strategy of MAX in an EFG of

no chance. A vertex E ∈ + is said to be reachable under B+ if there is a pure strategy of

MIN B− ∈ Σ
P
− such that E is in the playout under the profile (B+, B−). An information set

(of MAX or MIN) is said to be reachable under B+ if at least one vertex in it is reachable

under B+. The reachability of a vertex or an information set under a pure strategy of

MIN is defined similarly.

For every vertex E ∈ + in the game tree, we define ΣP
+,E ⊆ ΣP

+ to be the set of pure

strategies of MAX under which E is reachable (in particular, ΣP
+,A = ΣP

+); The set ΣP
−,E

is defined similarly.

Proof of Proposition 4.2.4. Let us consider a two-player game of no chance in which

MAX has perfect recall and MIN has multi-agent perfect recall. We will provide a

linear-time algorithm to compute the maxmin value of such a game.

We recursively define the function ev : + → R on all vertices of the game tree:

• If E is a leaf, then the value of this node is given by the utility function of MAX:

ev(E) ≔ D+ (E).

• If E is a decision node of MIN, then the value of this node is the minimum of the

value of its children: ev(E) ≔ minE′∈C(E) ev(E′).

4.2. COMPLEXITY OF EFGS 37

• Otherwise, E is a decision node of MAX. Let IS+ be the information set containing

E. Then the value of this node is

ev(E) ≔ max
0∈�+

min
E′∈IS+

ev(0(E′)), (4.1)

where 0(E′) ≔ 0 ∩ C(E′) denotes the vertex reached by taking action 0 at node

E′.

The function ev is well-defined since MAX’s information sets form a forest due to

MAX’s perfect recall (Koller and Megiddo, 1992, Proposition 3.1). In addition, ev has

the same value for vertices in the same information set of MAX: in (4.1), the minimum

ranges over all successors of the information set and the maximum ranges over all

available actions at that information set. Both ranges depend solely on the information

set itself, and are therefore the same for all vertices in it.

Our goal is to show that the maxmin value is given by the value of the root:

E+ ≔ max
B+∈Σ

P
+

min
B−∈ΣP

−

U+ (B+, B−) = ev(A). (4.2)

Since ev(A) is computable in linear time using its recursive definition, (4.2) implies that

the maxmin value is computable in linear time, thus proving Proposition 4.2.4.

We first show that ev(A) is an upper bound of E+ with the help of a lemma proven

in Appendix B.1.1:

Lemma 4.2.6. For every vertex E ∈ + , it holds that

ev(E) ≥ max
B+∈Σ

P
+,E

min
B−∈ΣP

−

U+ (B+, B−). (4.3)

This lemma gives one interpretation of the value ev(E): it is the upper bound of

the guaranteed payoff of any pure strategy of MAX’s under which E can be reached.

Applying (4.3) to the root and noticing ΣP
+,A = ΣP

+, we obtain

ev(A) ≥ max
B+∈Σ

P
+,A

min
B−∈ΣP

−

U+ (B+, B−) = max
B+∈Σ

P
+

min
B−∈ΣP

−

U+ (B+, B−) = E+. (4.4)

To complete the proof of Proposition 4.2.4, we still need to show that the value

ev(A) can actually be achieved, i.e. there exists a pure strategy B∗+ of MAX such that

minB−∈ΣP
−
U+ (B

∗
+, B−) = ev(A).

For this, first notice that ev implicitly defines a non-empty set of pure strategies

of MAX ΣP
+,ev ⊆ ΣP

+ in the following sense: at each information set IS+ of MAX, a

strategy in ΣP
+,ev assigns an action in �+ such that the maximum in (4.1) is achieved.

Let B∗+ ∈ Σ
P
+,ev be an arbitrary pure strategy defined by ev. We can show that B∗+ achieves

the value ev(A) with the help of another lemma proven in Appendix B.1.1:

Lemma 4.2.7. Let B∗+ ∈ Σ
P
+,ev. For every vertex E reachable under B∗+, it holds that

ev(E) ≤ min
B−∈Σ

P
−,E

U+ (B
∗
+, B−). (4.5)

This lemma gives another interpretation of the value ev(E): it is the lower bound of

the payoff of MAX’s best strategies when MIN only plays pure strategies under which

E can be reached. Applying (4.5) to the root and noticing ΣP
−,A = ΣP

− , we obtain

ev(A) ≤ min
B−∈Σ

P
−,A

U+ (B
∗
+, B−) = min

B−∈ΣP
−

U+ (B
∗
+, B−) ≤ max

B+∈Σ
P
+

min
B−∈ΣP

−

U+ (B+, B−) = E+. (4.6)

38CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

Combining (4.4) and (4.6), we have

E+ ≤ ev(A) ≤ min
B−∈ΣP

−

U+ (B
∗
+, B−) ≤ E+,

hence all inequalities are equalities: E+ = ev(A) = minB−∈ΣP
−
U+ (B

∗
+, B−) for all pure

strategies of MAX B∗+ in ΣP
+,ev. In particular, maxmin strategies of MAX can be found

by computing the function ev. □

P-membership in Proposition 4.2.4 holds if MAX has PR, which is the best we can

do: if MAX only has MA-PR, then the problem becomes NP-hard.

Proposition 4.2.8. Pure Maxmin is NP-hard for EFGs of no chance in which MAX

has MA-PR. The result holds even under the restriction to 2 agents for MAX and to

Boolean games.

Proof. We give a reduction from the NP-complete problem 3-Colouring, which is

defined as follows:

Input A non-directed graph (+, �).

Output Decide whether the graph has a legal 3-colouring, which is a mapping � :

+ → {1, 2, 3} such that for all (E1, E2) ∈ � , � (E1) ≠ � (E2).

Let (+, �) be an instance of 3-Colouring. We use the ideas of concurrent actions

and non-adaptivity from Subsection 3.2.2 to build the following game.

Players MAX with multi-agent perfect recall of 2 agents, labelled by 1 and 2; MIN

with perfect information.

Game tree At the root, MIN chooses two vertices E1, E2 ∈ + , and concurrently and

independently shows E8 to agent 8 of MAX. Then each agent of MAX concurrently

and independently chooses a colour (21, 22 ∈ {1, 2, 3}), and the game ends.4

Payoffs for MAX MAX receives 0 if either of the following conditions is satisfied:

• E1 = E2 but 21 ≠ 22;

• (E1, E2) ∈ � but 21 = 22.

Otherwise, MAX receives 1.

Maxmin The threshold of maxmin value is 1.

The construction is polynomial-time in the input (+, �). Indeed, the game tree is of

size O(|+ |2). In addition, the construction yields a Boolean EFG of no chance in which

MAX has multi-agent perfect recall and 2 agents, and MIN has perfect information.

We now show that the pure maxmin value of the game is 1 if (+, �) has a legal

3-colouring, and 0 otherwise. Notice first that the set of pure strategies of each agent

of MAX is in bijection with the set of 3-colourings of the graph.

4Concretely, we may construct the game tree in the following way: MIN first picks E1. Each choice leads

to a different information set for agent 1 (thus agent 1 knows E1), who chooses a colour 21. Each choice of

E1 and 21 leads to a different information set for MIN (thus MIN has perfect information), who chooses a

vertex E2. Each choice of E2 leads to a different information set of agent 2, which is the same for all choices

of E1 and 21 (thus agent 2 is unaware of E1 and 21, but knows E2). Finally, agent 2 chooses a colour 22.

4.2. COMPLEXITY OF EFGS 39

• Suppose that (+, �) has a legal 3-colouring �∗ : + → {1, 2, 3}. Then, if each

agent of MAX plays �∗ as their strategy, MAX always obtains a payoff of 1 since

neither condition for a zero payoff can be met. Hence, the maxmin value of the

game is 1 since 1 is the largest possible payoff of the game.

• Conversely, suppose that (+, �) does not have a legal 3-colouring. We can show

that every pure strategy of MAX gets a payoff of 0 against MIN’s best response.

– If the agents of MAX play two different pure strategies (i.e. they pick two

different 3-colourings), their strategies differ on at least one vertex, say

E ∈ + . Then MIN can play E1 = E2 = E so that MAX gets a payoff of 0.

– If the agents of MAX pick a common 3-colouring � : + → {1, 2, 3},
then since � cannot be a legal 3-colouring, there is (E∗

1
, E∗

2
) ∈ � such that

� (E∗
1
) = � (E∗

2
). Hence, MIN can play E1 = E∗

1
and E2 = E∗

2
so that MAX

gets a payoff of 0.

As a conclusion, the pure maxmin value of the game is 1 if the graph has a legal

3-colouring; if no such colouring exists, then the pure maxmin value is 0. □

Remark. Koller and Megiddo (1992, Proposition 2.6) prove a similar result using a

reduction from 3-SAT. We provide a simpler reduction, which suits better our needs

to prove several other results in this dissertation, and also strengthens their result to 2

agents (instead of 3).

Remark. The contrast between NP-hardness for EFGs of no chance in which MAX has

MA-PR and MIN has PI (as in Proposition 4.2.8) and membership in P for EFGs of no

chance in which MAX has PI and MIN has MA-PR (as in Proposition 4.2.4) shows that

there is an asymmetry between MAX and MIN in the computation of maxmin values,

when MAX can only use pure strategies. This is in contrast with the symmetry between

MAX and MIN implied by the minimax theorem when MAX can use mixed strategies:

max
f+∈Σ

M
+

min
f−∈ΣM

−

U+ (f+, f−) = min
f−∈ΣM

−

max
f+∈Σ

M
+

U+ (f+, f−). (4.7)

For pure strategies, in general, we only have

max
B+∈Σ

P
+

min
f−∈ΣM

−

U+ (B+, f−) ≤ min
f−∈ΣM

−

max
B+∈Σ

P
+

U+ (B+, f−),

and the inequality is strict, for instance, in the game Matching Pennies (Figure 3.3).

4.2.3 EFGs of chance

In games with perfect information for both players, the restriction to pure strategies is

inessential, as pure strategies give as high a payoff as mixed strategies. The minimax

algorithm and alpha-beta search (Knuth and Moore, 1975) indeed compute the maxmin

value in linear time for EFGs of no chance and with perfect information. With minor

modifications, these algorithms also work when there are chance nodes (Ballard, 1983).

Proposition 4.2.9. Pure Maxmin is decidable in linear time, and a fortiori is in P, for

EFGs of chance in which both MAX and MIN have PI.

40CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

However, it becomes hard when at least one player does not have perfect informa-

tion.5

Proposition 4.2.10. Pure Maxmin is NP-hard for EFGs of chance in which MAX has

PI and MIN has PR. The result holds even under the restriction to Boolean games.

Proof. We give again a reduction from 3-Colouring. Given an instance (+, �) of

3-Colouring, we build the following Boolean EFG.

Players Nature; MAX with perfect information; MIN with perfect recall.

Game tree The game proceeds as follows:

1. At the root, Nature chooses uniformly at random a vertex E ∈ + and shows it

to MAX (i.e. each choice of E leads to a different information set of MAX).

2. After observing E, MAX chooses a colour 2+ ∈ {1, 2, 3}.

3. Without observing E nor 2+ (i.e. all choices of E and 2+ lead to the same

information set of MIN), MIN chooses an edge 4 ∈ � and a colour 2− ∈
{1, 2, 3}.

Payoffs for MAX MAX receives 0 if E is part of the edge 4 and 2+ = 2− . Otherwise,

MAX receives 1.

Maxmin The threshold of maxmin value is 1 − 1/|+ |.

The construction is polynomial-time in the input (+, �). Indeed, the game tree is of

size O(|+ | |� |). In addition, the construction yields a Boolean EFG of chance in which

MAX has perfect information and MIN has perfect recall.

We now show that if (+, �) has a legal 3-colouring, then the maxmin value of the

game is at least 1− 1/|+ |; conversely, if the graph is not 3-colourable, then the maxmin

value of the game is at most 1− 2/|+ |. Notice first that the set of pure strategies of each

agent of MAX is in bijection with the set of 3-colourings of the graph.

• Suppose that (+, �) has a legal 3-colouring�∗ and that MAX plays�∗. Consider

MIN’s strategy (E′, E′′, 2−) ∈ � × {1, 2, 3}. Since �∗ is a legal 3-colouring,

�∗ (E′) ≠ �∗(E′′), hence MAX assigns the colour 2− to at most one of E′ and

E′′. Whenever Nature does not pick this vertex as E, MAX gets a payoff of 1. It

follows that MAX gets a payoff of 1 with probability at least 1 − 1/|+ |.

• Conversely, suppose that (+, �) does not have a legal 3-colouring. Let � : + →
{1, 2, 3} be a pure strategy of MAX. Then there is (E′, E′′) ∈ � and a colour 2

such that � (E′) = � (E′′) = 2. If MIN plays the strategy 4 = (E′, E′′) and 2− = 2,

then MAX gets 0 with probability 2/|+ | (i.e. whenever Nature chooses E′ or E′′

as E). Hence, MAX’s expected payoff is at most 1 − 2/|+ |.

As a conclusion, the pure maxmin value of the game is at least 1−1/|+ | if the graph

has a legal 3-colouring; if no such colouring exists, then the pure maxmin value is at

most 1 − 2/|+ |. □

Proposition 4.2.11. Pure Maxmin is NP-hard for EFGs of chance in which MAX has

PR and MIN has PI. The result holds even under the restriction to Boolean games.

5In contrast, computing optimal behaviour strategies for MAX is still in P (Koller and Megiddo, 1992,

Section 3), even when both players only have perfect recall.

4.2. COMPLEXITY OF EFGS 41

Proof. We adapt the reduction in the proof of Proposition 4.2.10 by changing the game

tree as follows.

1. At the root, MIN chooses an edge 4 ∈ � and a colour 2− ∈ {1, 2, 3}.

2. Then Nature chooses uniformly at random a vertex E ∈ + .

3. After knowing E but without observing 4 nor 2− (i.e. each choice of E leads to a

unique information set of MAX, which is the same for all choices of 4 and 2−),

MAX chooses a colour 2+ ∈ {1, 2, 3}.

4. The payoffs for MAX are as defined in the proof of Proposition 4.2.10.

The game is now a Boolean game of chance in which MAX has PR and MIN has PI.

The reasoning is exactly the same as in the proof of Proposition 4.2.10, and the same

conclusion holds: the pure maxmin value of the game is at least 1 − 1/|+ | if the graph

has a legal 3-colouring, and otherwise it is at most 1 − 2/|+ |. □

Remark. A similar result is proven by Frank and Basin (2001, Section 6) for EFGs with

one-sided incomplete information by using a reduction from the NP-complete problem

Clique. See the proof of Proposition 5.3.3.

We now consider games of chance in which MIN only has multi-agent perfect

recall. Proposition 2.10 by Koller and Megiddo (1992) implies that if MAX also only

has multi-agent perfect recall, then Pure Maxmin is ΣP
2
-hard. We use a different

reduction to strengthen their result and show that actually Maxmin remains ΣP
2
-hard

even if MAX has perfect information.

Proposition 4.2.12. Pure Maxmin is ΣP
2
-hard for EFGs of chance in which MAX has

PI and MIN has MA-PR. The result holds even under the restriction to 2 agents for MIN

and to Boolean games.

For this proof, we will consider a reduction from a variant of the domino tiling

problem. We use the following definition for tiling (Grädel, 1990; Goldsmith and

Mundhenk, 2007).

Definition 4.2.13 (Legal tiling). Let � be a finite set, �,+ ⊆ � × � be two binary

relations, and let (= {1, . . . , <} × {1, . . . , <} with < ≥ 2. A tiling of (is a mapping

g : (→ �. Such a tiling is called a legal tiling (with respect to � and +) if:

• Every pair of two horizontally adjacent tiles is in �:

∀A ∈ {1, . . . , < − 1},∀2 ∈ {1, . . . , <}, (g(A, 2), g(A + 1, 2)) ∈ �;

• Every pair of two vertically adjacent tiles is in +:

∀A ∈ {1, . . . , <},∀2 ∈ {1, . . . , < − 1}, (g(A, 2), g(A, 2 + 1)) ∈ +.

A legal tiling of a board of any shape is defined similarly.

The decision problem Tiling consists in, given (�, �,+, 1<),6 deciding whether

there is a legal tiling of the square board of size <. Tiling is known to be NP-complete

61< is the unary expression of <.

42CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

(van Emde Boas, 1997).7 Variants of tiling problems provide plenty of complete

problems for different complexity classes (Schwarzentruber, 2019). For example, the

following variant called Tiling Extension isΣP
2
-complete (Schaefer and Umans, 2002).

Input A finite set �, two binary relations �,+ ⊆ �×�, a natural number< expressed

in unary.

Output Decide whether there is a legal tiling of the first row of (= {1, . . . , <} ×
{1, . . . , <} that cannot be extended to a legal tiling of (.

In the following, we refer to a legal tiling of the first row that cannot be extended to

a legal tiling of the whole board as a non-extendable legal tiling of the first row.

Proof of Proposition 4.2.12. We give a reduction from Tiling Extension. Given an

instance (�, �,+, 1<) of Tiling Extension, we build a game in which MAX wins if

they can choose a legal tiling of {1} × {1, . . . , <}, such that whatever tiling g of the

whole board (MIN chooses, either g is not legal, or it does not extend MAX’s tiling.

Precisely, we build the following game.

Players Nature; MAX with perfect information; MIN with multi-agent perfect recall

of 2 agents, labelled by 1 and 2.

Game tree The game begins with a chance node and proceeds as follows:

1. At the root, Nature chooses uniformly at random a column 2 ∈ {1, . . . , <},
and only shows it to MAX.

2. MAX chooses a tile 3 ∈ �.

3. Nature then chooses uniformly at random two positions (A1, 21), (A2, 22) ∈
(, then concurrently and independently shows agent 8 of MIN the position

(A8 , 28).

4. Without observing 2 nor 3, each agent of MIN concurrently and indepen-

dently chooses a tile (31, 32 ∈ �), and the game ends.

Payoffs for MAX The payoff for MAX at the leaf induced by 2, 3, A1, 21, 31, A2, 22,

32 is defined to be:

1. 2<5, if (A1, 21) = (A2, 22) but 31 ≠ 32 (MAX wins if agent 1 and agent 2 of

MIN are inconsistent);

2. otherwise, 2<4, if (A1, 21) = (1, 2) but 31 ≠ 3, or if (A2, 22) = (1, 2) but

32 ≠ 3 (MAX wins if the tiling of any agent of MIN does not extend theirs);

3. otherwise, −<4 if A1 = A2 = 1 and 22 = 21 + 1 but (31, 32) ∉ � (MAX loses

if their tiling is illegal, which is verified with MIN’s choices);

4. otherwise, 1 if A1 = A2 ≠ 1 and 22 = 21 + 1 but (31, 32) ∉ � (MAX wins if

MIN’s tiling is illegal with respect to � in rows other than the first one);

5. otherwise, 1 if 21 = 22 and A2 = A1 + 1 but (31, 32) ∉ + (MAX wins if

MIN’s tiling is illegal with respect to +);

6. otherwise, 0.

Maxmin The threshold of maxmin value is 1/<4.

7Remark that 3-Colouring and Tiling have very similar structure; in the previous section, all proofs

based on 3-Colouring can be easily adapted to be based on Tiling.

4.2. COMPLEXITY OF EFGS 43

The construction is polynomial-time in the input (�, �,+, 1<). Indeed, the game

tree is of sizeO(<5 |� |3), and the computation of the payoffs of the leaves is polynomial-

time. In addition, the construction yields an EFG of chance in which MAX has perfect

information and MIN has multi-agent perfect recall of 2 agents.

We will show that the pure maxmin value of this game is at least 1/<4 if (has a

non-extendable legal tiling of the first row (and at most 0 otherwise). First, observe

that the pure strategies of MAX are in bijection with the tilings of the first of row of (.

Similarly, the pure strategies of each agent of MIN are in bijection with the tilings of (.

Furthermore, observe that MAX gets a strictly negative payoff only when A1 = A2 = 1

and 22 = 21 + 1 (and (31, 32) ∉ �), which happens with probability at most 1/<3;

hence MAX cannot get an expected payoff smaller than (1/<3) ∗ (−<4) = −< from

the corresponding leaves.

=⇒ Suppose first that there is a non-extendable legal tiling of the first row g0 :

{1, . . . , <} → �. Let (g1, g2) denote an arbitrary pure strategy of MIN, where g1 and

g2 are tilings of (.

• If g1 ≠ g2 holds, then with probability at least (1/<2)2 = 1/<4, Nature chooses

(A1, 21) = (A2, 22) over which g1, g2 differ, and MAX gets 2<5. Since the smallest

expected payoff they can get from negative leaves is −<, the expected payoff of

MAX against (g1, g2) is at least 1/<4 × 2<5 − < ≥ 1/<4.

• Now assume g1 = g2, but g1 is not an extension of g0. Then, with probability

at least 1/<3, Nature chooses 2, A1 = 1 and 21 = 2 such that g1 differs from g0
on (1, 2), and MAX wins 2<4. As above, it follows that the expected payoff of

MAX against (g1, g2) is at least 1/<3 × 2<4 − < ≥ 1/<4.

• Finally, if g1 = g2 holds and g1 is an extension of g0, then g1 is illegal by definition

of g0. Then with probability at least 1/<4, Nature chooses (A1, 21), (A2, 22) to

witness the illegality, and MAX gets 1. It follows again that the expected payoff

of MAX against (g1, g2) is at least 1/<4 (observe that in this case, MAX cannot

get a negative payoff under other choices by Nature: g1 and g2 are legal on the

first row since they extend g0).

Hence, playing g0 guarantees a payoff of at least 1/<4 for MAX, which means the

maxmin value of the game is at least 1/<4.

⇐= Conversely, suppose that the maxmin value of the game is at least 1/<4, and let

g0 be a pure strategy of MAX achieving this value.

• We claim that g0 is legal. Indeed, otherwise MIN can play the strategy (g, g),
where g : (→ � is an arbitrary extension of g0. Under this profile, with

probability at least 1/<4 Nature chooses A1 = A2 = 1 and 21, 22 = 21 + 1

witnessing the illegality of g on the first row, resulting in a negative payoff of

−<4 for MAX. Moreover, under this profile MAX cannot get a payoff of 2<5 nor

2<4, so they get at most 1 from all other leaves. It follows that the maxmin value

is at most 1/<4 × (−<4) + 1 ≤ 0, contradicting the assumption.

• We also claim that any extension g : (→ � of g0 is illegal. Indeed, otherwise

MIN can play the strategy (g, g), which yields a payoff of 0 for MAX at all leaves,

again contradicting the assumption.

44CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

Hence, g0 is a non-extendable legal tiling of the first row. In addition, by the

argument above, we see that if no such g0 exists, then MAX gets at most 0 against

MIN’s best responses.

To show that this result still holds under the restriction to Boolean games, we can

use the gadgets in Lemma B.1.5 to compile all integers payoffs in the construction above

into Boolean ones. □

We conclude this section by showing the ΣP
2
-membership for the most general

setting.

Proposition 4.2.14. Pure Maxmin is in ΣP
2

for EFGs of chance in which MAX and

MIN have MA-PR.

Proof. One can first guess a pure strategy for MAX, then verify that for each pure

strategy of MIN, it yields an expected payoff no less than the threshold. Since each

verification takes linear time, the problem is in ΣP
2
. □

4.3 Complexity of compactly represented games

In this section, we study the complexity of Pure Maxmin for EFGs represented in

compact form. As it turns out, the complexity of Pure Maxmin is very robust to

the exact compact representation chosen; hence we formulate hardness results for a

very restricted class of representations, and membership results for a very general

one. We first introduce these representations and show that they encompass natural

representations, then we give the complexity results, which, as it happens, parallel the

results for non-compact EFGs.

4.3.1 Compact representations of games

For most tabletop and video games, their game tree is rarely defined explicitly, but

rather implicitly by their game rules; such rules allow computing the decision maker,

the children, the payoffs, etc., at a given node of the game tree, which can therefore

be generated online. In other words, we may say that the trees of these games are

represented compactly by their game rules.

Typically, for such a compact representation of a game, the corresponding game

tree is exponentially larger, or more. In the following, we introduce two formalisms to

capture the intuition of what a compactly represented game means.

Compact Boolean games

We first introduce a minimal formalism for compactly represented games, which will be

used to prove all hardness results in this section. Our formalism is inspired by quantified

Boolean formulae (QBF). A QBF is a formula of the form

Q1 G1 Q2 G2 · · ·Q= G= i(G1, G2, . . . , G=),

where for all 8, G8 is a Boolean variable (with values in B = {0, 1}) and Q8 ∈ {∀, ∃},
8

and i is a plain (unquantified) Boolean formula. A QBF can be regarded as a game of

no chance with perfect information in which MAX and MIN take turns to pick a value

8The quantifiers ∀ and ∃ have their standard meaning of “for all” and “exists”.

4.3. COMPLEXITY OF COMPACTLY REPRESENTED GAMES 45

for each variable: MAX is responsible for variables with the existential quantifier ∃ and

MIN for the universal quantifier ∀, and MAX’s goal is to render the formula i true.

Peterson et al. (2001) propose a generalisation of QBF called dependency quantified

Boolean formula (DQBF), which allows dependencies for existential variables. For

example, in the DQBF

∀G1∀G2∃H1 (G1)∃H2 (G2) i(G1, H1, G2, H2),

the value of H1 can only depend on the value of G1, and the value of H2 only on G2.

Hence, a DQBF represents a game of no chance in which MAX only has multi-agent

perfect recall. In the example above, H1 and H2 can be regarded as being controlled by

two agents of MAX. Notice that DQBF is indeed a generalisation of QBF, since every

QBF of size = can be transformed into an equivalent DQBF of size O(=2) by allowing

each existential variable to depend on all previous variables.

As we intend to model games of chance with multi-agent perfect recall for both

MAX and MIN, we introduce a generalisation of DQBF that we call compact Boolean

game (CBG), which can be written into the following form to mimic DQBF:

P1 G1 (�1) P2 G2 (�2) · · · P= G= (�=) i+ (G1, G2, . . . , G=),

where P 9 is the owner of G 9 , � 9 is the set of variables on which G 9 depends, and i+ is

an unquantified Boolean circuit. More formally:

Definition 4.3.1 (Compact Boolean game). A compact Boolean game (CBG) is a tuple

W = ⟨-, P,D, i+⟩, with - an ordered list of variables, P : - → {0, +,−}9 an owner

function, D : - → P(-) a dependency function such that for all G ∈ - , D(G) only

contains variables that precede G in the ordering and D(G) = ∅ if P(G) = 0, and i+ a

Boolean circuit with inputs in - and one Boolean output.

A CBG is said to be of no chance, if it does not have chance variables, that is,

variables owned by Nature.

Intuitively, a CBG represents the Boolean EFG of chance in which for each G 9 in

turn, player P(G 9) chooses a Boolean value after observing only the values chosen for

the variables in D(G 9) (and Nature chooses uniformly at random). After all variables

have been played, MAX receives the payoff given by the Boolean output of the circuit

i+ (G1, G2, . . . , G=) (and MIN receives the opposite). In particular, a node of the game

is given by a variable index 9 and an assignment to G1, . . . , G 9−1.

To formally define this EFG defined by a CBG, we identify an assignment ` of a

set of variables - to the set of variables assigned true, and accordingly write P(-) for

the set of all assignments of - .

Definition 4.3.2 (CBG EFG). The Boolean EFG of chance defined by a CBG W =

⟨-, P,D, i+⟩, with - = (G1, . . . , G=), is defined to be

� (W) ≔
(
), {+,−}, (+8)8∈{0,+,−} , (?E)E∈+0

, D,
(
⟨IS:

8 , �
:
8 ⟩

) :
8∈{+,−}

)
,

where

•) = (+, �, A) with + ≔ {(9 , `) | 1 ≤ 9 ≤ = + 1, ` ∈ P({G1, . . . , G 9−1})},
� ≔ {(E, E′) ∈ +2 | E = (9 , `), E′ = (9 + 1, `) or (9 + 1, ` ∪ {G 9 })}, A ≔ (1, ∅);

9Recall that 0 represents the Nature.

46CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

• +8 ≔ {(9 , `) ∈ + | P(G 9) = 8};

• For every 1 ≤ 9 ≤ = such that P(G 9) = 0,

? (9 ,`) ((9 + 1, `)) = ? (9 ,`) ((9 + 1, ` ∪ {G 9 })) = 1/2

for all ` ∈ P({G1, . . . , G 9−1});

• D((= + 1, `)) ≔ 1 for ` |= i+ and 0 for ` ̸ |= i+;

• For 8 ∈ +,−, IS:
8 is defined to be the :-th connected component of the equivalence

relation {(
(9 , `), (9 , `′)

)
∈ +2 | P(G 9) = 8 ∧ ` ∩ D(9) = `′ ∩ D(9)

}
;

• �:
8
≔ {0⊤, 0⊥}, with 0⊤ ((9 , `)) ≔ (9+1, `∪{G 9+1}) and 0⊥ ((9 , `)) ≔ (9+1, `)

for every (9 , `) ∈ IS:
8 .

By definition, CBGs define Boolean EFGs of chance. Moreover, since only nodes

at the same depth can be in the same information set, it is clear that the EFGs thus

defined are games with multi-agent perfect recall. it is also easy to see that a player

8 ∈ {+,−} has perfect information if and only if D(G 9) = {G1, . . . , G 9−1} for all G 9 ∈ -
such that P(G 9) = 8; this intuitively means player 8 observes all values chosen by Nature

and the other player. It is also easy to see that a player 8 ∈ {+,−} has perfect recall if

and only if for all G 9 , G 9′ ∈ - , 9 ≤ 9 ′ and P(G 9) = P(G 9′) = 8 implies D(G 9) ⊆ D(G 9′)
(i.e. player 8 never forgets any value they have observed before) and G 9 ∈ D(G′9) (i.e.

player 8 never forgets any value they have chosen before).

We will prove hardness results for CBGs with an arbitrary circuit i+. However,

these hardness results even hold for CBGs the circuit i+ of which is restricted to

certain languages (e.g. ROBDD, which stands for “reduced ordered binary decision

diagram”; see Darwiche and Marquis (2002)), due to the following lemma, proven in

Appendix B.1.3.

Lemma 4.3.3. Let W = ⟨-, P,D, i+⟩ be a CBG. Then there exists a CBG W′ :=

⟨- ′, P′,D′, i′+⟩ with i′+ in CNF (respectively DNF, ROBDD), which has the same

maxmin value as W, and such that (i) W′ is of no chance if and only if W is of no

chance; (ii) MAX and MIN have the same degree of imperfect information in W′ as in

W. Furthermore, W′ can be constructed from W in polynomial time.

Note that these restrictions are in some sense minimal: it is indeed easy to show that

the computation of the maxmin value for a CBG is essentially trivial if the circuit i+ is

restricted to be a single term (conjunction of literals) or a single clause (disjunction of

literals).

Oracle Games

CBGs are intended to be a very constrained representation of games. At the other

extreme, we now define oracle games, a minimally constrained representation for which

we will show membership complexity results. Intuitively, an oracle game (respectively

a valid oracle game) is a game with an exponential number of vertices 0, 1, . . . , 2= − 1,

represented in binary over = digits, for which all components are given by oracles

(respectively by polynomial-space oracles that have a polynomial horizon).

4.3. COMPLEXITY OF COMPACTLY REPRESENTED GAMES 47

Definition 4.3.4 (Oracle EFG). A two-player oracle game (abbreviated as OG) is a

tuple of the form G ≔ ⟨=, C, P, p, u, IS⟩, where = is a positive integer, and C, P, p, u, IS

are algorithms such that for all E, E′ ∈ + (G) ≔ {0, 1, . . . , 2= − 1}:10

• on input E, C returns an ordered list of elements of + (G) (children of E);

• on input E, P returns one of 0, +,− (decision-maker at E);

• on inputs E, E′ with P(E) = 0 and E′ ∈ C(E), p returns a rational number in [0, 1]
(probability of E′ being the child of E drawn by Nature);

• on input E with C(E) = ∅, u returns a rational number (utility of leaf E for MAX);

• on inputs E, E′ and 8 ∈ {+,−}, IS returns a Boolean value (whether E, E′ are in

the same information set of 8).

Definition 4.3.5 (Valid OG). An OG G ≔ ⟨=, C, P, p, u, IS⟩ is said to be valid if the

following conditions hold:

1. algorithms C, P, p, u, IS are all deterministic algorithms that run in space at most

= and terminate in time at most 2=;

2. the output of algorithms p and u is of size at most = (probabilities and utilities

have a representation of linear size);

3. the binary relation {(E, E′) ∈ + (G)2 | E′ ∈ C(E)} is a tree with the node 0 as the

root;

4. for all sequences E1 ∈ + (G), E2 ∈ C(E2), . . . , E: ∈ C(E:−1), : is at most = (that

is, the game horizon is linear);

5. for all E ∈ + (G) withP(E) = 0,
∑

E′∈C(E) p(E, E
′) = 1 holds (p returns a probability

distribution at chance nodes);

6. for 8 ∈ {+,−}, IS(E, E′, 8) = 1 only if P(E) = P(E′) = 8;

7. for 8 ∈ {+,−}, the binary relation {(E, E′) ∈ + (G)2 | IS(E, E′, 8) = 1} is an

equivalence relation such that for every (E, E′) in this relation, |C(E) | = |C(E′) |
holds (vertices in the same information set have the same number of children).

Observe that we require the oracles to run in linear rather than polynomial space,

and similarly we require a linear horizon. However, this assumption is without loss of

generality up to polynomial-time reductions. Indeed, if an oracle runs in space =2 rather

than = for some constant 2, then one can define the OG game with =2 instead of = as

its first component (akin to the idea of padding used in complexity theory). Similarly,

up to a replacement of = by 2= for some constant 2, this definition is independent of the

computational model on which the oracles are supposed to run.

The definition allows one to naturally capture families of games defined by the same

rules (oracles) but different sizes (=); for instance, the family of Checkers games played

on an = × = board. If such a family of OGs is valid, this means that it has “reasonable”

game rules (essentially, computable in polynomial space). Accordingly, for complexity

analyses, we define the size of a valid oracle game to be =; in particular, we do not count

the representations of the oracles, for which we make no specific assumption.11

10If the number of nodes is not a power of 2, extra nodes are simply disconnected from the root 0.
11A reasonable encoding would be given by the input to a fixed Universal Turing Machine.

48CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

The interpretation of a valid OG as an EFG is straightforward. The actions at an

information set can be denoted by integers in such a way that the :-th action maps

every vertex E in the information set to the :-th child of E (which is well-defined due to

Item 6 and 7 of Definition 4.3.5). Moreover, given the requirements on the oracle, the

following result is straightforward.

Lemma 4.3.6. The EFG of chance defined by a given valid OG G can be computed in

deterministic exponential time. In particular, this EFG has at most exponential size in

the size = of G.

Let us emphasise that it can be decided in polynomial space whether a given OG

is valid, by verifying that no property is violated; for instance, it can be checked that p

runs in space at most = by enumerating all pairs of vertices and for each one, running

the algorithm until more than = space, or more than 2= time, is used (if ever); all of this

can be done in polynomial space.

Similarly, it can also be decided in polynomial space whether a player in a given

OG has perfect information, perfect recall, or multiagent perfect recall, by verifying

that there is no counterexample: for PI, two nodes in the same information set; for PR,

an invalid pair of paths to the same information set; for MA-PR, a path intersecting the

same information set twice.

Relationships between compact representations

It is easy to see that given a CBG W ≔ ⟨-, P,D, i+⟩ with =W variables, an OG G ≔

⟨=G, C, P, p, u, IS⟩ that defines the same EFG as W can be computed efficiently.

Indeed, the vertices in the EFG can be encoded efficiently over =W + log =W bits, by

encoding the level 8 of a vertex over log =W bits, and the assignment of the previous

variables over =W bits. Given this propositional representation, the oracles in G can be

defined to be the straightforward polynomial-space algorithms that, given input in this

representation, retrieve the corresponding information from W; for instance, u can be

implemented by evaluating i+ on the values of all variables stored in the representation

of the node. Taking 2=2
′

W to be the maximum space used by these algorithms on the

computational model at hand and defining =G ≔ max(=W + log =W , 2=
2′

W) indeed yields

a valid OG (observe that the horizon of the underlying EFG is =W).

To summarise, a family of CBGs can be transformed in polynomial time into a

family of valid OGs that define the same family of EFGs. We will in particular use this

result to show that if computing maxmin is hard for CBGs of some type, then it is hard

as well for valid OGs of this type.

In addition, since CBG is a relatively minimal formalism to represent compact

games, while OG is a relatively powerful one, if we prove that computing the maxmin

value for CBGs is as hard as for OGs, then it implies that for every other intermediate

formalism, the complexity of computing the maxmin value is as hard as for both CBG

and OG.

More concretely, for membership results, we prove them for OG; for hardness

results, we prove them for CBG. We leave to future work the precise relationship

between oracle games as we define them, and standard compact languages for defining

games, such as the Game Description Language GDL (Genesereth and Thielscher,

2014). We conjecture that propositional GDL (restricted to games with a polynomial

horizon) can be reduced to OG, while full GDL cannot (even with the restriction to a

polynomial horizon) due to the computational complexity of generating states (nodes

4.3. COMPLEXITY OF COMPACTLY REPRESENTED GAMES 49

in the tree) using logic programming. However, the precise connection remains open;

a good starting point may be the complexity results by Bonnet and Saffidine (2014).

4.3.2 Summary of results

In the remainder of this section, we consider the following variant of Pure Maxmin.

Definition 4.3.7 (Pure C-Maxmin). Let G be a class of zero-sum EFGs. Then Pure

C-Maxmin(G) is the following decision problem.

Input A valid oracle game G that defines an EFG � ∈ G, and a rational number <.

Output Decide whether E+ (Σ
P
+, Σ

P
−) ≥ < holds in �.

Recall that the size of a valid OG G ≔ ⟨=, C, P, p, u, IS⟩ is defined to be =. The

complexity of Pure C-Maxmin(G) is summarised in Table 4.2; see Subsection 4.2.1

for hints about how to read it. Observe that this table is parallel to Table 4.1, in the sense

that all polynomial-time (respectively NP-complete, ΣP
2
-complete) problems become

PSPACE-complete (respectively NEXP-complete, NEXPNP-complete) under compact

representations. However, except for membership results, this is not per definition of

succinct representations, and we indeed have to prove all hardness results (even if the

proofs are simple).

No chance Chance

MAX

MIN
PI/PR/MA-PR PI PR MA-PR

PI PSPACE-c [h: 4.3.12] PSPACE-c [m: 4.3.8] NEXP-c [h: 4.3.14] NEXP
NP-c [h: 4.3.16]

PR PSPACE-c [m: 4.3.9] NEXP-c [h: 4.3.15] NEXP-c NEXP
NP-c

MA-PR NEXP-c [h: 4.3.13] NEXP-c NEXP-c [m: 4.3.10] NEXP
NP-c [m: 4.3.11]

Table 4.2: Complexity of Pure C-Maxmin. All hardness results hold even under the

restriction to CBGs with CNF (respectively DNF, ROBDD) circuits.

4.3.3 Membership results

Proposition 4.3.8. Pure C-Maxmin is in PSPACE for valid OGs of chance in which

both MAX and MIN have PI.

Proof. In this case, we can use backward induction to compute the maxmin value

(Proposition 4.2.9). Since the game has a polynomial horizon by assumption, and

the children of a node can be iterated over in PSPACE, this can indeed be done in

PSPACE. □

Proposition 4.3.9. Pure C-Maxmin is in PSPACE for valid OGs of no chance in which

MAX has PR and MIN has MA-PR.

Proof. We consider the algorithm of Proposition 4.2.4, which computes the maxmin

value by a bottom-up induction on the game tree. Since the game tree of an oracle game

has polynomial depth and the children of each information set can be iterated over in

PSPACE, this computation can be done in PSPACE from the oracle representation. □

50CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

The following two results are obtained directly by using Lemma 4.3.6 to first

compute, in deterministic exponential time, the EFG defined by the given valid OG, then

running a nondeterministic polynomial-time algorithm (Proposition 4.2.3), respectively

a nondeterministic polynomial-time algorithm with an NP-oracle (Proposition 4.2.14)

on this EFG of exponential size.

Proposition 4.3.10. Pure C-Maxmin is in NEXP for valid OGs of no chance in which

MAX and MIN have MA-PR, and for valid OGs of chance in which MAX has MA-PR

and MIN has PR.

Proposition 4.3.11. Pure C-Maxmin is in NEXPNP for valid OGs of chance in which

both MAX and MIN have MA-PR.

4.3.4 Hardness results

As discussed above, we give all hardness results for compact Boolean games. Since all

proofs use a polynomial-time reduction from a decision problem to Pure C-Maxmin

for a family of CBGs, all these results also imply that Pure C-Maxmin is at least as

hard for the corresponding family of valid OGs, as discussed in Section 4.3.1.

Proposition 4.3.12. Pure C-Maxmin is PSPACE-hard for CBGs of no chance in which

both MAX and MIN have PI.

Proof. It is easy to see that given a QBF Q1 G1 Q2 G2 · · ·Q= G= i(G1, G2, . . . , G=), the

CBG ⟨-, P,D, i⟩, with - = (G1, . . . , G=), P(8) = + for Q8 = ∃ and P8 = − for Q8 = ∀,
and D(G8) = {G1, . . . , G8−1} for all 8, is a game of no chance and with perfect information.

Moreover, it has a maxmin value of 1 if and only if the QBF is valid. We conclude

using the PSPACE-hardness of deciding the validity of a QBF (Stockmeyer and Meyer,

1973). □

Proposition 4.3.13. Pure C-Maxmin is NEXP-hard for CBGs of no chance in which

MAX has MA-PR and MIN has PR.

Proof. Peterson et al. (2001, Theorem 5.2.1) show that deciding the validity of a DQBF

of the form∀G1∀G2∃H1 (G1)∃H2 (G2) i(G1, H1, G2, H2) is already NEXP-hard. By defining

- ≔ (G1, G2, H1, H2), P(G1) = P(G2) ≔ −, P(H1) = P(H2) ≔ +, and D(G1) = D(G2) ≔ ∅,
D(H1) ≔ {G1}, D(H2) ≔ {G2}, we get the CBG ⟨-, P,D, i⟩, for which it is easy to see

that it has a maxmin value of 1 if and only if the DQBF is valid, which concludes. □

Proposition 4.3.14. Pure C-Maxmin is NEXP-hard for CBGs of chance in which MAX

has PI and MIN has PR.

Proof. We adapt the proof of Proposition 4.2.10 to CBGs, by giving a reduction from

Succinct 4-Colourability.12 An instance of this problem is a circuit qwith 2= inputs

G1, . . . , G=, H1, . . . , H= encoding integers G, H; q describes the graph � with 2= vertices

0, . . . , 2= −1, which has an edge (G, H) if and only if the circuit outputs 1 on input (G, H)
or (H, G) (or both), and q is a positive instance if and only if � is 4-colourable. This

problem is NEXP-complete (Balcázar et al., 1992, Corollary 6).13

12We choose 4 colours for simplicity, as 4 is a power of 2. It is clear that the proof of Proposition 4.2.10

goes through with 4-colourability instead of 3-colourability.
13In general, the number of vertices in the graph is in {2=−1, 2=−1 + 1, . . . , 2= − 1}, but a graph can

always be padded with isolated vertices to ensure that the number of vertices is a power of 2, and this does

not change 4-colourability; accordingly, the succinct representation q can be modified in polynomial time to

represent this, by replacing q with qG,H ∧ q, where qG,H tests that G and H are less than the initial number

of vertices.

4.3. COMPLEXITY OF COMPACTLY REPRESENTED GAMES 51

Given an instance of the succinct version, we define the ordered list of 3=+4 Boolean

variables (GE
1
, . . . , GE=, G

2+
1
, G

2+
2
, G4

1
, . . . , G4=, G

4
=+1
, . . . , G4

2=
, G

2−
1
, G

2−
2
) meant to encode in

binary the vertex E chosen by Nature, the colour 2+ chosen by MAX, the two vertices

of the edge 4 chosen by MIN, and the colour 2− chosen by MIN, respectively.

We moreover define

i+ := ∨

(
¬q(G4

1
, . . . , G4=, G

4
=+1
, . . . , G4

2=
) ∧ ¬q(G4

=+1
, . . . , G4

2=
, G4

1
, . . . , G4=)

)
¬

((∧=
9=1 (G

E
9
↔ G4

9
) ∨

∧=
9=1 (G

E
9
↔ G4

=+ 9)
)
∧

∧2
9=1 (G

2+
9
= G

2−
9
)
)

where the first line encodes that MAX wins if MIN chooses a non-edge, and the second

one encodes the winning conditions of the proof of Proposition 4.2.10.

Finally, we define players and dependencies as follows; for all 9 :

• P(GE
9
) ≔ 0, P(G2+

9
) ≔ +, P(G4

9
) ≔ −, P(G2−

9
) ≔ −;

• D(GE
9
) = ∅;

• D(G2+
1
) = {GE

1
, . . . , GE=}, D(G2+

2
) = D(G2+

1
) ∪ {G2+

1
};

• D(G4
9
) = {G4

1
, . . . , G4

9−1
};

• D(G2−
1
) = {G4

1
, . . . , G4

2=
}, D(G2−

2
) = D(G2−

1
) ∪ {G2−

1
}.

It is easy to see that if the circuit q describes a graph �, then the compact Boolean

game ⟨-, P,D, i+⟩ encodes the same game as the explicit game built from � in the

proof of Proposition 4.2.10, with the exception that MIN can choose a non-edge 4 ∉ � ;

however, since MAX obtains the maximal payoff 1 (first line of i+) in this case, MIN

never has a strict incentive to choose a non-edge and hence, this does not change the

maxmin value of the game. Hence, we have indeed given a polynomial reduction from

Succinct 4-Colourability to Pure C-Maxmin for CBGs of chance in which MAX

has PI and MIN has PR. □

By using the same proof as for Proposition 4.3.14, but having MIN’s variables

ordered first and resorting to Proposition 4.2.11 instead of Proposition 4.2.10, we

obtain the same result for the dual setting.

Proposition 4.3.15. Pure C-Maxmin is NEXP-hard for CBGs of chance in which MAX

has PR and MIN has PI.

Finally, we turn to the case in which MIN only has multi-agent perfect recall.

Proposition 4.3.16. Pure C-Maxmin is NEXPNP-hard for CBGs of chance in which

MAX has PI and MIN has MA-PR.

Proof. The proof is similar to the proof of Proposition 4.2.12, but we consider the

version of Tiling Extension in which < is encoded in binary, which is known to be

NEXPNP-hard (Goldsmith and Mundhenk, 2007, Theorem 2.2). We build the same

game as in Proposition 4.2.12, but as a compact Boolean game, as follows.

We write ? := ⌈log<⌉ and @ := ⌈log |� |⌉. The game has variables G2
1
, . . . , G2? ,

encoding the bits of a column number 2, G3
1
, . . . , G3@ , encoding the choice of a tile

3 ∈ �, and similarly G
A1

1
, . . . , G

A1
? , G

21

1
, . . . , G

21
? , G

A2

1
, . . . , G

A2
? , G

22

1
, . . . , G

22
? encoding the

choice of positions (A1, 21) and (A2, 22), and G
31

1
, . . . , G

31
@ , G

32

1
, . . . , G

32
@ , encoding the

choice of tiles 31, 32 ∈ �. These variables are ordered as they are listed. At the end

52CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

of this ordering, a polynomial number of variables GD
1
, . . . , GD= are added, as required by

the transformation of the game to a Boolean game.

The players and dependencies are as follows, in one-to-one correspondence with

the description of the game tree in the proof of Proposition 4.2.12:

1. for 9 = 1, . . . , ?, P(G2
9
) := 0 (and hence, D(G2

9
) := ∅);

2. for 9 = 1, . . . , @, P(G3
9
) := + and D(G3

9
) := {G2

1
, . . . , G2?} ∪ {G

3
1
, . . . , G3

9−1
};

3. for C ∈ {A1, 21, A2, 22} and 9 = 1, . . . , ?, P(GC
9
) := 0;

4. for 8 = 1, 2 and 9 = 1, . . . , @, P(G38
9
) := − and D(G38

9
) := {GA8

1
, . . . , G

A8
? } ∪

{G28
1
, . . . , G

28
? } ∪ {G

38
1
, . . . , G

38
9−1
}.

We finally define i+. First observe from the proof of Lemma B.1.5 that if utility D is

assigned to a set of leaves satisfying iD in the original game, then there is a polynomial-

size disjunction iD
1

of terms over the variables GD
1
, . . . , GD< such that 1 (respectively

0) is assigned to the set of leaves satisfying iD ∧ iD
1

(respectively iD ∧ ¬iD
1
) in the

corresponding Boolean game.14

Now define the following propositional formulae, for ®G = (G1, . . . , G:) and ®H =

(H1, . . . , H:):

• i1 (®G) :=
∧:−1

9=1 ¬G 9 ∧ G: , satisfied if and only if ®G encodes the integer 1;

• i= (®G, ®H) :=
∧:

9=1 (G 9 ↔ H 9), satisfied if and only if ®G and ®H are the binary

encodings of the same integer;

• i+1 (®G, ®H) :=
∨:

9=1

(∧ 9−1

9′=1
(G 9′ ↔ H 9′) ∧ G 9 ∧ ¬H 9 ∧

∧:
9′= 9+1 (¬G 9′ ∧ H 9′)

)
, satis-

fied if and only if ®G is the encoding of the integer encoded by ®H, plus 1;

• i[<] (®G) (respectively i� (®G)) for formulae satisfied if and only if ®G encodes an

integer in {1, . . . , <} (respectively in {1, . . . , |� |});15

• i� (®G, ®H) (respectively i+ (®G, ®H)) for a formula satisfied if and only if the tiles

3G , 3H encoded by ®G, ®H are in the H (respectively V) relation; such polynomial

size formulae can be obtained as the disjunction of the description of all pairs

®G, ®H (as terms), since � and + are assumed to be explicitly given in the input to

Succinct Tiling Extension.

With these formulae in hand, we define the following formulae, in one-to-one

correspondence with the description of the utilities in Proposition 4.2.12:16

• k1 := i2<5

1
∧ A1 = A2 ∧ 21 = 22 ∧ ¬(31 = 32),

• k2 := i2<4

1
∧ ¬k1 ∧

∨
8=1,2

(
A8 = 1 ∧ 28 = 2 ∧ ¬(38 = 3)

)
,

• k3 := i−<
4

1
∧ ¬k1 ∧ ¬k2 ∧ A8 = 1 ∧ A2 = 1 ∧ (22 = 21 + 1) ∧ ¬� (31, 32),

14For instance, for the reformulation of Figure B.1 (page 177), we would have i
5/8
1

= G
5/8
1
∨ (¬G

5/8
1
∧

¬G
5/8
2
∧ G

5/8
3
) , encoding the two paths to a 1-leaf in the tree.

15For instance, for < = 5, which has binary encoding 101, i [<] is ¬G1 ∨ (G1 ∧ (¬G2 ∧ (¬G3 ∨ G3))) ≡
¬G1 ∨ ¬G2.

16To facilitate reading, we use shorthand notation, e.g. A1 = A2 for i= (®GA1 , ®GA2) , but keeping in mind that

these are indeed polynomial-size formulae.

4.4. COMPLEXITY AGAINST OPPONENT MODELS 53

• k4 := i1
1
∧¬k1∧¬k2∧¬k3∧ A2 = A1∧¬(A1 = 1) ∧ (22 = 21 +1) ∧¬� (31, 32),

• k5 := i1
1
∧ ¬k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4 ∧ (A2 = A1 + 1) ∧ (22 = 21) ∧ ¬+ (31, 32),

• k6 := i0
1
∧ ¬k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4 ∧ ¬k5.17

Finally, i+ is defined to be

∨
8=1,2

¬i� (®G38) ∨

(
i[<] (®G2) ∧ i� (®G3) ∧

∧
8=1,2

(i[<] (®A8) ∧ i
[<] (®28)) ∧

6∧
:=1

k:

)
.

It is easy to see that i+ encodes the same rewards as the game built in the proof of

Proposition 4.2.12, except in the following cases:

• when MIN chooses non-existent tiles, but since this ensures the maximal payoff

of 1 for MAX (via the first disjunct of i+), MIN never has a strict incentive to do

so, hence this does not change the maxmin value of the game,

• otherwise, when MAX chooses a non-existent tile, but since this gives them the

minimal payoff of 0 (the second conjunct inside the parentheses), again it never

has a strict incentive to do so,

• otherwise, when Nature chooses non-existent row or columns, which yields a

neutral payoff of 0; this happens with probability ? := 1− <5

25⌈log<⌉ , independently

of MIN’s and MAX’ strategies.

From this, it follows that the game of Proposition 4.2.12 has a maxmin value of : if

and only if the game above has a maxmin value of : (1 − ?), hence we indeed have a

reduction from Succinct Tiling Extension to Pure C-Maxmin. □

4.4 Complexity against opponent models

We now consider the situation in which MIN is only allowed to choose from a finite set

of behaviour strategies. This setting corresponds to playing a game against an opponent

whose behaviour or reasoning is captured by a model we know. Such a model is called

an opponent model (cf. Section 2.5). The same setting also captures the problem of

planning in uncertain environments or with adversarial cost functions (McMahan et al.,

2003).

Concretely, we study the following variant of Pure Maxmin. As in Section 4.2, we

consider the complexity for EFGs.

Definition 4.4.1 (Pure OM-Maxmin). Let G be a class of zero-sum EFGs. Then Pure

OM-Maxmin(G) is the following decision problem.

Input An EFG � ∈ G, a rational number <, and a finite set ΣO
− ⊆ ΣB

− of MIN’s

behaviour strategies in �.

Output Decide whether E+ (Σ
P
+, Σ

O
−) ≥ < holds in �.

17Lemma B.1.5 applied to this example will rescale the 0-reward to another value, so we must indeed take

the 0-reward into account here.

54CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

We define the size of the input of this problem to be the sum of ∥�∥, ∥<∥, and the

sizes of the strategies in ΣO
− ; the size of a behaviour strategy c− ∈ ΣO

− is defined to

be the sum of the sizes of the rational numbers (probabilities) that define c− , over all

MIN’s nodes in the game tree.

In the following, strategies in ΣO
− ⊆ ΣB

− will be referred to as opponent models

(abbreviated as OMs). A game with OMs is said to be of no chance, if the original

game is of no chance, and all OM strategies in ΣO
− are pure strategies. This terminology

is consistent, since a player with a non-pure OM strategy is indistinguishable from

Nature, a player whose behaviour strategy is known.

4.4.1 Summary of results

The complexity of Pure OM-Maxmin(G) is summarised in Table 4.3; see Subsec-

tion 4.2.1 for hints about how to read it. For each degree of imperfect information

for MAX (PI/PR/MA-PR), the first row corresponds to games of no chance and the

second one to games of chance. Note that it no longer makes sense to distinguish

between different degrees of imperfect information of MIN, but it makes sense to study

the complexity with respect to the number of OMs (1, a constant but at least 2, or

unbounded).

MAX

Chance |ΣO
− |

1 constant (≥ 2) unbounded

PI
P P P

P NP-c [h: 4.4.8] NP-c

PR
P P P [m: 4.4.5]

P [m: 4.4.3] NP-c NP-c

MA-PR
P [m: 4.4.3] P [m: 4.4.6] NP-c [h: 4.4.7]

NP-c [h: 4.4.4] NP-c NP-c [m: 4.4.2]

Table 4.3: Complexity of Pure OM-Maxmin. All hardness results hold even under the

restriction to Boolean games with at most 2 agents for MAX.

Since we only consider pure strategies for MAX, this problem is trivially in NP.

Proposition 4.4.2. Pure OM-Maxmin is in NP.

Proof. One can guess a pure strategy of MAX, then verify that it yields an expected

payoff no less than the threshold against all the OMs given in the input, all in time linear

in the size of the input. □

This provides an upper bound for all cases in Table 4.3. Other results will be shown

in the following parts.

4.4.2 Complexity of best responses in EFGs

We begin by considering the case |ΣO
− | = 1, i.e. MIN’s behaviour strategy is fixed (or,

equivalently, MAX knows MIN’s probability of choosing each strategy from a finite set

of OMs). Under this circumstance, a two-player game is transformed into a one-player

game, which has no chance if the original game has no chance and MIN’s known

strategy is a pure strategy.

4.4. COMPLEXITY AGAINST OPPONENT MODELS 55

We denote the only strategy in ΣO
− by c− . Clearly, the maxmin value E+ (Σ

P
+, Σ

O
−) =

maxB+∈ΣP
+
U+ (B+, c−) is the value of MAX’s pure best responses to c− . Hence, studying

the complexity of the case |ΣO
− | = 1 is equivalent to studying the complexity of finding

the best responses of a player.

The best responses are easy to compute when MAX has perfect recall or there is no

chance.

Proposition 4.4.3. (Koller and Megiddo, 1992, Section 3.3) Pure OM-Maxmin with

only one OM is decidable in linear time, and is a fortiori in P, for EFGs of no chance

in which MAX has MA-PR, and for EFGs of chance in which MAX has PR.

However, if MAX only has MA-PR and there is chance (due to chance nodes and/or

due to MIN’s behaviour strategy c−), then the problem becomes intractable.

Proposition 4.4.4. Pure OM-Maxmin with only one OM is NP-hard for EFGs of

chance in which MAX has MA-PR. The result holds even under the restriction to 2

agents for MAX and to Boolean games.

Proof. Consider the same reduction from 3-Colouring as in the proof of Proposi-

tion 4.2.8. In the game obtained by the reduction, consider MIN’s uniformly random

strategy c− (i.e. MIN picks any pair of (E1, E2) ∈ +
2 with a probability of 1/|+ |2).

One can easily verify that if (+, �) has a legal 3-colouring, then MAX can play

a strategy corresponding to a legal 3-colouring to ensure a payoff of 1 against MIN’s

strategy c− . Conversely, if the graph is not 3-colourable, then for every pure strategy

of MAX, the expected payoff against c− is strictly less than 1, since any inconsistency

between the two agents of MAX or any monochromatic edge in MAX’s chosen colouring

will be detected by MIN’s strategy c− with a non-zero probability, in which case MAX

gets 0 as payoff. Hence, the game has a maxmin value of at least 1 if and only if the

graph is 3-colourable. □

4.4.3 Complexity of EFGs of no chance with multiple OMs

We now consider the case |ΣO
− | ≥ 2, starting with games of no chance. In this

problem setting, the OMs are pure strategies of MIN. Hence, we can write ΣO
− =

{B−,1, . . . , B−, |ΣO
− |
}, where B−,8 ∈ Σ

P
− for 1 ≤ 8 ≤ |ΣO

− |.

Proposition 4.4.5. Pure OM-Maxmin with multiple OMs is in P for EFGs of no chance

in which MAX has PR.

Proof. Let = = |ΣO
− |. We propose the procedure depicted in Algorithm 1, in which we

write 0(E@) for the child of E@ reached by taking the action 0.

The Procedure Maxmin takes as input {(B−,8 , E8) | 8 = 1, . . . , =}, a multi-set of

vertices, each associated with an OM of MIN. It returns true if there is a pure strategy

for MAX with maxmin value at least < in the subgame induced by these vertices and

OMs.

For this, Procedure Maxmin first computes the next decision nodes of MAX reached

by simulating each OM B−,8 starting from the associated vertex E8 . If along the way a

leaf with value less than < is encountered, then it returns false, since avoiding this leaf

is out of control of MAX. If a leaf with value at least < is encountered, then MAX has

nothing to do against this OM; hence this leaf can be ignored (which is done tacitly

in Algorithm 1). Otherwise, an internal node E′8 of MAX is encountered, from which

MAX must make a decision. Hence, we gather each such nodes and partition them

56CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

Algorithm 1: Polynomial-time algorithm for Pure OM-Maxmin against =

OMs for EFGs of no chance in which MAX has PR.

1 return Maxmin({(B−,8 , A) | 8 = 1, . . . , =})
2

3 def Maxmin({(B−,8 , E8) | 8 ∈ �}):
4 + ′ ← ∅
5 for 8 ∈ �:
6 E′8 ← E8
7 while E′8 is not a leaf and P(E′8) = −:

8 E′8 ← B−,8 (E
′
8)

9 if E′8 is a leaf and D+ (E
′
8) < <:

10 return False

11 elif E′ is not a leaf :

12 + ′ ← + ′ ∪ {(B−,8 , E
′
8)}

13 + ′
1
, . . . , + ′? ← partition of + ′ by the information sets of MAX

14 for 9 = 1, . . . , ?:

15 action found← False

16 for each MAX’s action 0 available at the information set containing + ′9 :

17 + ′′9 ← {(B−,@ , 0(E@)) | (B−,@ , E@) ∈ +
′
9 }

18 if Maxmin(+ ′′9) returns True:

19 action found← True

20 break

21 if action found = False:

22 return False

23 return True

according to the information set of MAX containing them, yielding + ′
1
, . . . , + ′?; for

each one, we try to find an action for MAX from which there is a strategy with maxmin

value at least <, using a recursive call.

To show that this procedure is correct, assume first that MAX has a strategy with

maxmin value at least <. Then, by definition, this strategy takes the same action at all

nodes within the same information set, and against every OM the unique leaf reached

has value at least <. Hence, Algorithm 1 indeed returns true.

Conversely, assume that the algorithm returns true. Then there is a traversal of the

game tree such that at each decision node of MAX an action is taken, in such a way that

against each OM, a leaf with payoff at least < is reached. Now these actions together

indeed form a pure strategy for MAX since (i) by construction, whenever two nodes

in the same information set are encountered at the same level of recursion, the same

action is taken, and (ii) it cannot be the case that two successful recursive calls at the

same level encounter the same information set of MAX; indeed, otherwise there would

be two different decisions for MAX (at + ′91 and + ′92) leading to the same information

set, violating the assumption of perfect recall for MAX.18 It follows that the actions in

independent recursive calls can indeed be chosen independently of each other. □

If MAX only has multi-agent perfect recall, Algorithm 1 no longer works. However,

18This can also be shown by noticing that MAX’s information sets form a forest due to their perfect recall

(Koller and Megiddo, 1992, Proposition 3.1).

4.4. COMPLEXITY AGAINST OPPONENT MODELS 57

if the number of OMs is bounded by a constant, then the decision problem is still in P.

Proposition 4.4.6. For every : ≥ 1, Pure OM-Maxmin with : OMs is in P for EFGs

of no chance in which MAX has MA-PR.

Proof. Let us write ΣO
− = {B−,1, . . . , B−,:}, where B−,8 ∈ ΣP

− for 1 ≤ 8 ≤ : . We first

observe that for a fixed pure strategy of MAX and a fixed OM, a unique leaf of the

game tree) is reached. Hence, the outcome of a given strategy B+ of MAX against all

OMs can be represented by a :-tuple of leaves (;1, . . . , ;:) (possibly with repetitions)

such that ;8 is the leaf reached by the playout under the profile (B+, B−,8). For every

constant : , there are only O(|L()) |:) such tuples. Hence, we can enumerate them to

decide whether there is one :-tuple for which (i) the value min1≤8≤: D+ (;8) is at least <

and (ii) the tuple indeed corresponds to the outcomes of some pure strategy of MAX

against the : OMs.

Algorithm 2: Polynomial-time algorithm for verifying that a :-tuple

(;1, . . . , ;:) is reachable under some pure strategy of MAX against the :

OMs.

1 B+ ← empty mapping from IS+ to actions

2 for 8 = 1, . . . , ::

3 pl← the unique path from A to ;8
4 for E ∈ pl:

5 0 ← the action taken at E in pl

6 if P(E) = −:

7 if 0 ≠ B−,8 (E):
8 return False /* ;8 is not consistent with B−,8 */

9 continue /* E is good, look at the next one */

10 IS+ ← the information set of MAX containing E

11 if B+ (IS+) is not set yet:

12 B+ (IS+) ← 0

13 elif B+ (IS+) ≠ pl(E):
14 return False /* no B+ can reach (;1, . . . , ;:) */

15 return True

It remains to show that (ii) can be decided in polynomial time. The whole algorithm

is given as Algorithm 2. We first check that on the unique path from the root to ;8 , all

decisions taken at MIN’s nodes are indeed as prescribed by the 8-th OM B−,8 . We then

check that these : paths indeed prescribe the same action at every information set of

MAX. Clearly, Algorithm 2 runs in polynomial time (more precisely, in O(: |) |) time),

which completes the proof. □

It turns out that a constant number of OMs is essentially the best we can do when

MAX only has multi-agent perfect recall.

Proposition 4.4.7. Pure OM-Maxmin with multiple OMs is NP-hard for EFGs of no

chance in which MAX has MA-PR. The results hold even under the restriction to 2

agents for MAX, to Boolean games, and to polynomially (in the size of game tree) many

OMs.

Proof. Consider again the reduction in Proposition 4.2.8. Notice that in the game

obtained by the reduction, MIN has |+ |2 pure strategies, one for each pair of vertices.

58CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

If we take all these pure strategies as OMs, then a graph has a legal 3-colouring if and

only if MAX has a pure strategy with payoff 1 against all these OMs. □

Another way to interpret this result is by comparing it to Proposition 4.4.4: the

proof there is essentially the same, but using a single behaviour OM, with a stochastic

behaviour corresponding to a uniform mixture of the pure OMs used in the proof of

Proposition 4.4.7.

4.4.4 Complexity of EFGs of chance with multiple OMs

We now turn to the case of multiple OMs, for games of chance. Surprisingly, in the

presence of chance, computing the pure maxmin value against only 2 OMs is already

NP-hard, even if MAX has perfect information.

Proposition 4.4.8. Pure OM-Maxmin with 2 OMs is NP-hard for EFGs of chance in

which MAX has PI. The results hold even under the restriction to Boolean games.

Proof. We give a reduction from the NP-complete problem Subset Sum, which is

defined as follows:

Input A multi-set of natural numbers (= {81, . . . , 8=}, a natural number : .

Output Decide whether there exists a subset � ⊆ (that sums up to : (
∑

9∈� 9 = :).

Let (= {81, . . . , 8=} and : form an instance of Subset Sum. We build a game in

which, intuitively, a strategy of MAX is a subset � of (, one OM verifies
∑

9∈� 9 ≥ : ,

and the other verifies
∑

9∈� 9 ≤ : .

Concretely, consider the following game:

Players Nature; MAX with perfect information; MIN with two OMs, c−,≤ and c−,≥ .

Game tree See Figure 4.1. At the root, Nature chooses uniformly at random an element

9 ∈ (. MAX then chooses between ✓ (encoding the choice of some � ∋ 9) or

× (� ∌ 9). Finally, MIN chooses ≤ or ≥: MIN always chooses ≤ under the OM

c−,≤ , and always chooses ≥ under c−,≥ .

Payoffs for MAX For each Nature’s choice 9 ∈ (, MAX’s payoff is as follows:

• If MIN has chosen ≥, MAX receives = 9 if they have chosen ✓, otherwise

0.

• If MIN has chosen ≤, MAX receives 2: − = 9 if they have chosen ✓,

otherwise 2: .

Maxmin The threshold of maxmin value is : .

The construction is polynomial-time in the input ((, :). Indeed, the game tree is

of size O(|(|). In addition, the construction yields an EFG of chance with 2 OMs in

which MAX has perfect information.

Observe that the pure strategies of MAX are in bijection with the subsets of (. For

each subset � ⊆ (, if MAX plays the pure strategy corresponding to � via choosing ✓

(respectively ×) for 9 ∈ � (respectively 9 ∉ �), then MAX gets an expected payoff of

∑
9∈�

(
1

=
× = 9) +

∑
9∉�

(
1

=
× 0) =

∑
9∈�

9

4.5. OTHER VARIANTS OF PURE MAXMIN 59

0
81 8=

+

✓1 ×1

-

≤ ≥

-

≤ ≥

+

✓n ×n

-

≤ ≥

-

≤ ≥

Figure 4.1: An extensive-form game that encodes an instance of Subset Sum.

against the OM c−,≥ , and

∑
9∈�

(
1

=
× (2: − = 9)) +

∑
9∉�

(
1

=
× 2:) = 2: −

∑
9∈�

9

against the OM c−,≤ . Hence, the OM-maxmin value is

max
�⊆(

min(
∑
9∈�

9 , 2: −
∑
9∈�

9) ≤ max
�⊆(

: ≤ :,

with equality if and only if
∑

9∈� 9 = : for some � ⊆ (.

Therefore, the maxmin value is : if and only if there is a subset � of (that sums up

to exactly :; if no such subset exists, the maxmin value is at most : − 1. This concludes

our proof of NP-hardness. Finally, NP-hardness also holds for Boolean games because

one can use Lemma B.1.5 to compile the game above into a Boolean one. □

Remark. Proposition 4.4.8 can also be proved by a reduction from the NP-complete

problem Knapsack. The reduction from this problem is very similar to the one above

from Subset Sum, but the EFG thus obtained does not depend on : , while the payoffs

in the reduction above depend on : .

4.5 Other variants of Pure Maxmin

We finally briefly discuss two natural variants of Pure Maxmin for EFGs.

Definition 4.5.1 (Pure ≤-Maxmin). Let G be a class of zero-sum EFGs. Then Pure

≤-Maxmin(G) is the following decision problem.

Input An EFG � ∈ G and a rational number <.

Output Decide whether E+ (Σ
P
+, Σ

P
−) ≤ < holds in �.

Notice that Pure ≤-Maxmin(G) is not the complement of Pure Maxmin(G), which

would consist in deciding whether the maxmin value of a game is strictly smaller than

a given threshold. Still, the complexity class of Pure ≤-Maxmin(G) turns out to be

the complement of that of Pure Maxmin(G).

Definition 4.5.2 (Pure =-Maxmin). Let G be a class of zero-sum EFGs. Then Pure

=-Maxmin(G) is the following decision problem.

Input An EFG � ∈ G and a rational number <.

60CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

No chance Chance

MAX

MIN
PI/PR/MA-PR PI PR MA-PR

PI P P coNP-c/DP-c ΠP
2
-c/DP

2 -c

PR P coNP-c/DP-c coNP-c/DP-c ΠP
2
-c/DP

2 -c

MP-PR coNP-c/DP-c coNP-c/DP-c coNP-c/DP-c ΠP
2
-c/DP

2 -c

Table 4.4: Complexity of Pure ≤-Maxmin and Pure =-Maxmin, on the left and right

of each cell, respectively.

Output Decide whether E+ (Σ
P
+, Σ

P
−) = < holds in �.

The results are summarized in Table 4.4. As it turns out, all results are parallel to

those for Pure Maxmin in Table 4.1.

Proposition 4.5.3. The P-membership results in Table 4.4 hold.

Proof. This follows from the fact that there is a polynomial-time algorithm for comput-

ing the maxmin value in these cases (cf. Proposition 4.2.4 and Proposition 4.2.9). □

Proposition 4.5.4. The coNP-completeness and ΠP
2
-completeness results in Table 4.4

hold. They hold even under the restrictions to 2 agents for MAX (in case MAX has

MA-PR) and to Boolean games.

Proof. For membership in coNP, we can check that for all pure strategies of MAX,

the best response of MIN (which can be computed in linear time in these cases; see

Proposition 4.2.3 and more precisely Proposition 4.4.3) yields at most < for MAX.

For membership in ΠP
2
, we can check that for all pure strategies of MAX, there

exists a strategy of MIN which yields at most < for MAX.

For completeness, the argument is similar for all cases. Consider for example EFGs

of chance in which MAX has PI and MIN has PR. In the proof of Proposition 4.2.10, we

give a reduction from 3-Colouring to Pure Maxmin, such that if a graph has a legal

3-colouring, the maxmin value of the EFG obtained is at least 1− 1/|+ |, and otherwise

it is at most 1 − 2/|+ |. Hence, this also gives us a reduction from the coNP-complete

complement of 3-Colouring to Pure ≤-Maxmin with 1 − 2/|+ | as threshold.

The other cases are similar.

• For EFGs of chance in which MAX has PR and MIN has PI (cf. Proposi-

tion 4.2.11), EFGs from “yes” instances of 3-Colouring have a maxmin value

of at least 1 − 1/|+ | while those from “no” instances have a maxmin value of at

most 1 − 2/|+ |.

• For EFGs of no chance in which MAX has MA-PR and MIN has PI (cf. Propo-

sition 4.2.8), EFGs from “yes” instances of 3-Colouring have a maxmin value

of at least 1 while those from “no” instances have a maxmin value of at most 0.

• Finally, for EFGs of chance in which MAX has PI and MIN has MA-PR (cf.

Proposition 4.2.12), EFGs from “yes” instances of Tiling Extension have a

maxmin value of at least 1/<4 while those from “no” instances have a maxmin

value of at most 0.

□

4.5. OTHER VARIANTS OF PURE MAXMIN 61

For G such that Pure Maxmin(G) is NP-complete, we have observed that Pure

≤-Maxmin(G) is coNP-complete, hence Pure =-Maxmin(G) is in DP19 (since a game

has a maxmin value : if and only if its maxmin value is both at least : and at most :).

We show below that Pure =-Maxmin(G) is also DP-hard.

Proposition 4.5.5. The DP-completeness results in Table 4.4 hold for EFGs of chance

in which MAX has PI and MIN has PR, and for EFGs of chance in which MAX has PR

and MIN has PI. They hold even under the restriction to Boolean games.

Proof. The membership results are shown as discussed above. For hardness, we will

give a reduction from two instances of 3-Colouring such that the EFG of chance thus

obtained has a certain maxmin value if and only if the first instance of 3-Colouring is

a “yes” instance and the second one is not.

Let (+1, �1) and (+2, �2) be two arbitrary graphs. Notice that adding vertices with

no edge to a graph does not change its 3-colourability. Hence, we assume without loss

of generality that = ≔ |+1 | = |+2 |.

Consider first the case in which MAX has PI and MIN has PR. Let �1 (respectively

�2) be the EFG of chance built from (+1, �1) (respectively (+2, �2)) in the proof of

Proposition 4.2.10. Then �1 (respectively �2) has a maxmin value of at least 1 − 1/=
if (+1, �1) (respectively (+2, �2)) is 3-colourable, and at most 1 − 2/= otherwise.

-

�1

+

1 − 3
2=

�2

Figure 4.2: An EFG with two 3-colouring

subgames �1 and �2.

0 1
· · ·

1 1 1

0 1

Figure 4.3: A Boolean chance tree

of linear size in = representing the

value 1 − 3/2=.

Now consider the EFG � depicted in Figure 4.2: at the root, MIN chooses whether

to play �1; if they do, then the game proceeds as in �1. Otherwise, MAX chooses

whether to play the game �2; if they do, then the game proceeds as in �2. Otherwise,

MAX receives a payoff of 1 − 3/2=.

Since both �1 and �2 are EFGs of chance in which MAX has PI and MIN has

PR, the game � is also an EFG of chance in which MAX has PI and MIN has PR. In

addition, the construction is polynomial-time in the two graphs in input.

It remains to show that � has a maxmin value of exactly 1 − 3/2= if and only if

(+1, �1) is 3-colourable while (+2, �2) is not. This is straightforward to verify.

• If (+1, �1) is not 3-colourable, then MIN can choose to play �1 so that the

maxmin value of � is at most 1 − 2/= < 1 − 3/2=;

• If both (+1, �1) and (+2, �2) are 3-colourable, the maxmin value of � is at least

1 − 1/= > 1 − 3/2= since MAX can get at least 1 − 1/= from both �1 and �2.

19See Appendix A.2 for the definition of the class DP and its generalisation to higher levels of the

polynomial hierarchy.

62CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

• If (+1, �1) is 3-colourable but (+2, �2) is not, then it is optimal for MIN to choose

not to play �1 and for MAX to choose not to play �2. Hence, the maxmin value

of � is exactly 1 − 3/2=.

This concludes the DP-hardness of =-Maxmin for EFGs of chance in which MAX

has PI and MIN has PR. The same construction as above with Proposition 4.2.11 also

shows the DP-hardness of =-Maxmin for EFGs of chance in which MAX has PR and

MIN has PI.

To show that these two problems remain DP-hard for Boolean games, we compile

away the constant 1− 3/2= using a technique similar to Lemma B.1.5, since �1 and �2

are already Boolean by construction. We give a possible compilation for this constant

in Figure 4.3, which has a linear size (in =) and involves only uniform chance nodes. □

Remark. Notice that there is nothing magic about the constant 1 − 3/2= in the proof;

one can actually choose any rational number strictly between 1 − 1/= and 1 − 2/= that

is expressible in a polynomial (in =) number of bits.

Proposition 4.5.6. The DP-completeness results in Table 4.4 hold for EFGs in which

MAX has MA-PR. They hold even under the restriction to 2 agents for MAX. For EFGs

of chance, they hold even under the further restriction to Boolean games.

Proof. For EFG of no chance in which MAX has MA-PR and MIN has PI, we use the

reduction in the proof of Proposition 4.2.8, which yields an EFG of no chance with 2

agents for MAX; its maxmin value is 1 if the graph is 3-colourable, and 0 otherwise.

The construction then is the same as in Figure 4.2, but the payoff of the leftmost

leaf is replaced by 1/2. By construction, the reduction is to an EFG with three values

(0, 1/2 and 1). For games of chance, the constant 1/2 can be compiled into Boolean

payoffs. □

Remark. When chance nodes are not allowed, we cannot compile the constant 1/2 into

Boolean payoffs. As a result, the precise complexity of =-Maxmin for Boolean EFGs

of no chance in which MAX has MA-PR and MIN has PI is still an open question. We

know that it is NP-hard since by deciding whether a Boolean game has a maxmin value

of exactly 1, one can decide whether a graph is 3-colourable by the construction in the

proof of Proposition 4.2.8; similarly, it is also coNP-hard.

However, intuitively, this problem does not seem to be DP-hard, since one NP oracle

call is enough to decide it,20 while DP-hard problems seem to require two such oracle

calls.

Similarly, for G such that Pure Maxmin(G) is ΣP
2
-complete, we have observed that

Pure ≤-Maxmin(G) is ΠP
2
-complete, hence Pure =-Maxmin(G) is in DP

2 ; we show

below that it is also DP
2 -hard.

Proposition 4.5.7. The DP
2 -completeness results in Table 4.4 hold. They hold even

under the restriction to 2 agents for MIN and to Boolean games.

Proof. The membership results are shown as discussed above. For hardness, we use a

construction similar to the one in Proposition 4.5.5, but with a reduction from a pair of

instances of Tiling Extension (cf. Proposition 4.2.12).

20The pure maxmin value of Boolean games of no chance is either 0 or 1, hence if the maxmin value is at

least 1 (which can be known from one NP oracle call) then it must be 1; if not, then it must be 0.

4.6. CONCLUSION 63

Given the EFG of chance �1 reduced from (�1, �1, +1, 1
<1) and �2 reduced from

(�2, �2, +2, 1
<2), let < ≔ max(<1, <2), and let � be the game built as in Figure 4.2,

but with the payoff of the leftmost leaf replaced by 1/2<4. Then � has a pure maxmin

value of exactly 1/2<4 if and only if the first instance of Tiling Extension is a “yes”

instance and the second one is not. To show that the problem remains hard for Boolean

games, we can use Lemma B.1.5 to compile the payoffs in � into Boolean ones. □

4.6 Conclusion

We have thoroughly investigated the computational complexity of finding a lower bound

on the pure maxmin value in two-player EFGs. For each degree of imperfect information

(perfect information, perfect recall, multi-agent perfect recall) for MAX and MIN, and

for games of no chance or of chance, we have either given a polynomial-time algorithm,

or shown completeness for a certain complexity class. This allows us to have a complete

landscape of this problem (Table 4.1). In addition, we have studied the complexity

landscape of the same decision problem, but under two other settings: when the EFGs

are defined by some compact representations (for which we have proposed a very generic

definition) (Table 4.2); when MIN is known to pick strategies from a finite set known

to MAX (Table 4.3). We have also studied the complexity of finding the upper bound

or the exact value of pure maxmin (Table 4.4).

Some hardness results presented in this work are already known in the literature

(mostly Koller and Megiddo, 1992). However, we have strengthened many of these

results in different ways: by giving a simpler reduction; by restricting the degree of

imperfect information or the number of strategies of a player; by restricting to Boolean

payoffs; etc. We emphasise that all the hardness results in our work hold under strong

restrictions: at most 2 agents for each player; only Boolean payoffs;21 only chance

nodes with uniform distribution; only one turn per agent of MAX or MIN.

We have also exhibited several previously unknown polynomial cases for EFGs of

no chance: games in which MAX has perfect recall (even if MIN has only multi-agent

perfect recall); games in which MAX has perfect recall and there are (an arbitrary

number of) known pure opponent models; and games in which MAX has multi-agent

perfect recall and there are a constant number of known pure opponent models.

Related work on the complexity of maxmin

We have focused on the complexity of pure maxmin, but not on behaviour maxmin or

mixed maxmin, since the latter ones are well-studied in the literature. For reference (and

comparison with pure maxmin), we give the complexity results concerning behaviour

and mixed maxmin for EFGs in Table 4.5. which all come from Koller and Megiddo

(1992) and Zhang et al. (2023).22

The complexity of Behaviour Maxmin and Mixed Maxmin for EFGs of no chance

is known to coincide with the one for EFGs of chance except in one open case, which

concerns EFGs of no chance and with multi-agent perfect recall. These games can also

be shown to have the same complexity as EFGs of chance by the following idea: all

21Except for one case: the DP-hardness of =-Maxmin is not known to hold for Boolean EFGs of no chance

in which MAX has MA-PR and MIN has PI; see the remark after Proposition 4.5.6.
22In the literature on team games (Zhang et al., 2023, for instance), behaviour maxmin and mixed maxmin

are called TME (team maxmin equilibrium) and TMECor, respectively.

64CHAPTER 4. COMPLEXITY OF PURE MAXMIN IN EXTENSIVE-FORM GAMES

MAX

MIN
PI PR MA-PR

PI P P coNP-c

PR P P coNP-c

MA-PR NP-c NP-c ΣP
2
-c/ΔP

2
-c

Table 4.5: Complexity of Behaviour Maxmin and Mixed Maxmin for EFGs of

chance. In the last cell, Behaviour Maxmin and Mixed Maxmin are ΣP
2
-complete

and ΔP
2
-complete, respectively.

chance nodes can be replaced by decision nodes of a new agent of MAX called MAX-

Nature, who is supposed to mimic Nature’s behaviour; MIN can impose large penalty

on MAX by challenging MAX-Nature whenever they deviate from Nature’s behaviour.

In the case of TMECor, MIN is also allowed to impose large penalty on MAX whenever

the other agents of MAX correlate their actions to the ones of MAX-Nature.23 We leave

the rigorous and detailed construction of such gadgets to future work.

The membership results for non-polynomial cases in Table 4.5 are proved by Zhang

et al. (2023, Appendix C) for the promise problem that consists in deciding whether the

behaviour/mixed maxmin is at least < or at most < − Y, where < and Y are both given

as input; this is to circumvent the possibility that the exact behaviour/mixed maxmin

value is irrational. For the complexity of the decision problems Behaviour Maxmin

and Mixed Maxmin as we have defined in this dissertation, see the work by Gimbert

et al. (2020).

Notice that in some of our proofs, the same hardness also holds for behaviour

maxmin rather than just for pure maxmin. For instance, in the proof of Proposition 4.2.8

(EFGs in which MAX has MA-PR and MIN has PI), behaviour strategies would not

enable MAX to get a reward of 1 when the graph is not 3-colourable. The same

argument is used by Koller and Megiddo (1992) to prove the NP-hardness of this case

for behaviour maxmin.

Prospectives

The main perspectives for this work are to study these decision problems related to the

maxmin value with finer-grained notions of complexity. In particular, we would like to

investigate the complexity of these problems in the setting of parameterized complexity.

Natural parameters for an EFG are, for instance, the maximal number of alternations

between MAX and MIN along any branch; the branching factor; the maximal size of

an information set; the number of distinct utility values. For some of these parameters,

we already know that the problems will be hard under the fixed-parameter setting as

well, since they are already hard for constant values of the parameters (number of

alternations, number of utility values).

Finally, an important direction for future work is to investigate the link between

our framework of oracle games and various classes of the game description language

GDL. Drawing such connections would allow giving a complexity picture for games

compactly represented in GDL (possibly with additional information, for instance a

known horizon).

23A similar idea will be used later in the proof of Proposition 5.3.7.

Chapter 5

Combinatorial game with

incomplete information

5.1 Introduction

As this dissertation is inspired by the game of Bridge, we are particularly interested in

games with incomplete information, in which players do not have common knowledge

about the game they play.

Organisation of the chapter

This chapter is organised as follows.

• In Section 5.2, we present the notion of games with incomplete information

and show how it is related to the notion of games with imperfect information.

We introduce a new subclass of games with incomplete information, which we

call combinatorial games with incomplete information. CGIIs have the defining

feature that their game tree has no chance node except for an initial drawing by

Nature, and has only public actions.

• In Section 5.3, we thoroughly investigate the complexity of Pure Maxmin for

CGIIs; these results are parallel to those for EFGs of chance, which means that

CGIIs are computationally as difficult (and thus as expressive) as EFGs of chance.

• In Section 5.4, we first study the best-defence model, which is a useful assumption

to simplify complicated CGIIs with a large universe. The notions of strategy

fusion and non-locality are then explored to understand intuitively why such

CGIIs are hard to solve. Finally, we show Ginsberg’s algorithm, a depth-first

search algorithm to compute the exact maxmin value of CGIIs under the best-

defence model, and analyse its running time.

5.2 Games with incomplete information

We first present the notion of games with incomplete information from the literature,

then introduce a new formalism for games with incomplete information that have only

public actions.

65

66 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

5.2.1 Incomplete information in games

In this subsection, we give a quick overview of the notion of incomplete information.

We then see how games with incomplete information can be modelled by EFGs with

imperfect information. For a detailed and formal definition of games with incomplete

information, readers can refer to Maschler et al. (2020, Chapter 9)

Incomplete information versus imperfect information

First, we emphasise that complete information and perfect information are similar

but nevertheless different notions. Faliszewski et al. (2016, Section 2.4.2) summarises

informally the difference between these two confusing and widely misunderstood terms;

let us rephrase their words.

• Complete information describes situations in which the whole structure of a game

(the number of players, the game tree, the information sets of each player, the

owner of each node, the payoff for each player at each leaf node, etc.) is common

knowledge among all the players of the game. Notice that all the games we have

seen until now are with complete information.

• On the other hand, perfect information is a more stringent requirement than

complete information. Not only the structure of the game is common knowledge,

but all players have full observability and perfect recall of the history (which

is essentially a record of every decision made by every player so far). In other

words, players always know their exact position in the game tree when asked to

make the next decision.

In summary, complete information is a weaker notion than perfect information;

equivalently, incomplete information is a particular case of imperfect information.

Example. Card games (Bridge, Poker, Hearts, etc.) are quintessential examples of

games with incomplete information. In these games, the dealing of cards is usually not

publicly observable; hands dealt to the players are thus not common knowledge. As a

consequence, a player may be uncertain about the payoff or available actions of the

other players, which can depend on their hidden hand.

Example. Auction is another typical example of games with incomplete information.

Indeed, in many (e.g. online) auctions, players usually do not know exactly how many

players participate in the same auction, nor do they know for sure how much other

players value the object to be sold by auction.

The Aumann model of incomplete information

To model incomplete information, we need to take into account not only each player’s

knowledge, but also their knowledge of the knowledge of the other players, and ad

infinitum. Such an infinite hierarchy of knowledge can be captured nicely by a finite

model called Aumann model of incomplete information, which we define as follows.

Definition 5.2.1 (Aumann model of incomplete information). Let* be a finite set. An

Aumann model of incomplete information (over*) is a tuple ⟨*, %, (R8)8∈%⟩ where %

is a finite set of players, and R8 is an equivalence relation over* for all 8 ∈ %.

5.2. GAMES WITH INCOMPLETE INFORMATION 67

The finite set * is called the universe, and its elements l ∈ * are called worlds.

Intuitively, a world represents a state of nature; two worlds in the same equivalence

classes of a player are indistinguishable by the player. Upon such a model, the hierarchies

of knowledge of the players are well-defined (Maschler et al., 2020, Section 9.1).

Example. In Bridge or Hearts, each possible way to deal a deck of 52 cards to 4 players

is considered to be a world. Two worlds are in the same equivalence class of a player if

and only if they have the same hand in both worlds: since a player cannot observe the

hand of the other players, they can only distinguish worlds by their own hand.

Remark. An Aumann model of incomplete information over* is a Kripke’s model over

* in which all the accessibility relations are equivalence relations. Such a model gives

a well-defined semantics to the epistemic logic (Fagin et al., 1995; Huth and Ryan,

2004):

i F � | ⊥ | ¬i | i1 ∨ i2 | 8i,

where � ranges over subsets of* and 8 over %. The modalities 8 for 8 ∈ % are naturally

interpreted as knowledge operators: 8� intuitively means player 8 “knows” �. This

logic is widely used in epistemic game theory to give epistemic foundations to game

theory (van Ditmarsch et al., 2015, Chapter 9).

If we add a commonly known (by the players) probability distribution d over the

universe *, also called a common prior, we obtain an Aumann model of incomplete

information with beliefs. Upon such a model, hierarchies of beliefs are also well-defined

(Maschler et al., 2020, Section 9.2).

From now on, we simply say Aumann model for an arbitrary Aumann model of

incomplete information with beliefs ⟨*, %, (R8)8∈% , d⟩.

The Harsanyi model of games with incomplete information

Informally, a game with incomplete information is an Aumann model ⟨*, %, (R8)8∈% , d⟩
together with a set of state games {�l}l∈* such that for every player 8 ∈ %, they have

the same set of strategies in two state games �l and �l′ whenever l and l′ are

indistinguishable by them, i.e. lR8l
′ holds.

A game with incomplete information proceeds as follows. Each player picks a

strategy for every state game, with the constraint that they must pick the same strategy

in two state games with worlds that are indistinguishable by them. At the beginning of

the game, Nature draws a world l ∈ *, called the real world, according to the prior

d commonly known by all players. Then, the players participate in the state game �l

and implement their strategy in this state game.

Example. Consider the EFG in Figure 5.1. It represents a game with incomplete

information with a uniform prior over a universe of only two worlds, over which MIN

has the finest equivalence class (which means MIN has complete information about the

real world), while MAX has the coarsest one (which means MAX has no information

about the real world). In the state game on the left, MAX and MIN play the usual

Matching Pennies; in the state game on the right, the goal is reversed so that MAX aims

to avoid picking the same face as MIN.

Notice that since MAX does not know which state game they play, they have to pick

either h at all 4 decision nodes of them, or t at all 4 nodes. On the other hand, MIN

knows the real world; hence they can choose their strategies in the two state games

independently: between H and T on the left, and between H′ and T′ on the right.

68 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

0
? =

1
2

1 − ? =
1
2

-

H T

+

(1,−1)

h

(0, 0)

t

+

(0, 0)

h

(1,−1)

t

-

H′ T′

+

(0, 0)

h

(1,−1)

t

+

(1,−1)

h

(0, 0)

t

Figure 5.1: Matching Pennies with incomplete information for MAX.

The method shown in the example above, which allows modelling a game with

incomplete information as an EFG with imperfect information, is called the Harsanyi

model of games with incomplete information. See Maschler et al. (2020, Section 9.4)

for the formal details of this model.

Therefore, throughout the remaining of this dissertation, we regard games with

incomplete information as a subclass of games with imperfect information.

Ex ante vs. interim

In the literature, the Harsanyi model of a game with incomplete information is referred

to as the ex ante stage of the game with incomplete information, while the state games

are referred to as the interim stage. To put it in other words, the ex ante stage corresponds

to the situation before the real world is drawn, or equivalently before players receive

information about the state game they will play. In this dissertation, we are mostly

interested in the interim stage.

5.2.2 Games with incomplete information and public actions

We propose a subclass of games with incomplete information, which contains those

games with incomplete information in which state games have only public actions and

no chance node. Our motivation for introducing this subclass will be explained in

Subsection 5.2.3.

Definition 5.2.2 (CGII). A combinatorial game with incomplete information (CGII) is

a tuple of the following elements:

• An Aumann model ⟨*, �, (R8)8∈�, d⟩ with a finite universe * of worlds, a finite

set � of agents, an equivalence relation R8 over * for each agent 8 ∈ �, and a

common prior d ∈ Δ(*) over the universe;

• A tree) called public tree with nodes + and leaves L()), the internal nodes of

which are partitioned into (+8)8∈�;

• A reward function D8 : L()) ×* → R for each agent 8 ∈ �.

A CGII is said to be Boolean if all its reward functions have values in B.

A CGII defines a game with incomplete information in which all state games have

no chance node and only public actions:

5.2. GAMES WITH INCOMPLETE INFORMATION 69

• the fact that state games in a CGII have no chance node is self-evident, by the

definition of the public tree of a CGII;

• the fact that they have only public actions is implicitly implied by the lack of

information set description in the definition of CGII, and also explicitly implied

by how we define below the notion of pure strategies in a CGII.

Remark. In principle, we should let a CGII have a set of public trees {)l}l∈* , one

for the state game in each world. However, for two-player games and maxmin values,

we may assume without loss of generality that all public trees are the same one; see

Subsection 5.4.2 for more details on this.

Pure strategies in a CGII

A CGII as a game with incomplete information proceeds as follows. First, Nature

randomly chooses a real world l ∈ * according to d. Then the state game in l

proceeds from the root of the public tree. At each internal node of the public tree, the

decision maker of this node chooses a successor node of the current node, depending

on their equivalence class of the real world.

Concretely, the notion of strategy in a CGII is defined as follows.

Definition 5.2.3 (Pure strategy of an agent). A pure strategy of an agent 8 ∈ � is a

mapping B8 : +8 ×* → + such that

• ∀E ∈ +8 ,∀l ∈ *, B8 (E, l) ∈ C(E);

• ∀E ∈ +8 ,∀l, l
′ ∈ *, lR8l

′ =⇒ B8 (E, l) = B8 (E, l
′).

The set of all pure strategies of agent 8 is denoted by ΣP
8 .

Remark. The first condition means that at each decision node of agent 8, they choose a

child of that node; the second condition means that agent 8 must choose the same child

for a node in any two worlds indistinguishable by them.

From the definition of strategy, one can see that the actions of every agent are indeed

public: when making a decision at a node, an agent knows perfectly where the node

is in the public tree, which in particular means they observe and remember the actions

picked by every agent in the past, starting from the root of the public tree.

0
0 1

-

H T

-

H T

+

h0 t0

+

h′
0

t′
0

+

h1 t1

+

h′
1

t′
1

-

H T

+

h t

+

h′ t′

Figure 5.2: Matching Pennies with incomplete information for MIN (on the left) and

its public tree (on the right), both with rewards omitted.

70 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

Example. Consider the game with incomplete information modelled as an EFG in

Figure 5.2 (on the left). This game is similar to the one in Figure 5.1, but now MAX

has complete information and MIN has incomplete information. The universe can be

written as {l0, l1}; MAX has the finest equivalence class and MIN has the coarsest

one. The public tree of the CGII that models this game is on the right in Figure 5.2.

On the left, since MIN does not observe the real world, they must play H in both

state games, or T in both. This constraint is indeed respected by the notion of strategies

in a CGII: on the right, MIN only has two pure strategies H and T since l0 and l1 are

indistinguishable by MIN.

Similarly, on the left, MAX can pick between heads or tails, depending on the

choices of Nature and MIN. On the right, MAX can again pick between heads or tails,

depending on MIN’s choice and the real world, since they can distinguish between l0

and l1; note that the latter point is not reflected by the public tree, but by the Aumann

model of the game.

The notions of outcome, playout, or expected utility can be defined like for EFGs.

Let (B1, . . . , B=) ∈ Σ
P
1
× · · ·ΣP

= be a pure strategy profile. We write (B1, . . . , B=) (l) for

the unique leaf reached under this profile when the real world is l.

Definition 5.2.4 (Expected utility). The expected utility for an agent 8 ∈ � under a

pure strategy profile (B1, . . . , B=) is defined to be:

U8 (B1, . . . , B=) =
∑
l∈*

d(l)D8
(
(B1, . . . , B=) (l), l

)
.

Teams and information in a CGII

Recall that in the literature, a team in an EFG is defined to be an inclusion-wise maximal

set of agents with perfect recall and the same utility function. We can similarly define

this notion for CGIIs.1

Definition 5.2.5 (Team). In a CGII, agents 8 and 9 are said to be in the same team if

D8 = D 9 . A team is an inclusion-wise maximal group of agents with the same utility

function.

We define a team’s degree of incomplete information in the following way.

• Multi-agent incomplete information (MA-II): an arbitrary team.

• Single-agent incomplete information (SA-II): a team of agents with the same

equivalence relation (i.e. R8 = R 9 for all agents 8 and 9 in the team).

• Complete information (CI): a team whose agents all have the finest equivalence

relation (i.e. R8 = {(l, l) | l ∈ *} for all agents 8 in the team).

Notice that by definition, complete information implies single-agent incomplete infor-

mation, which itself implies multi-agent incomplete information.

Intuitively, a team is a group of decentralised agents with shared interests working

cooperatively. In a CGII, a team with single-agent incomplete information can be

regarded as a team of one single agent since every agent in this team has the same

information and all actions are public.

1The plural of “CGII” should be “CGsII”, but we choose to treat CGII as a new word and write “CGIIs”

instead.

5.2. GAMES WITH INCOMPLETE INFORMATION 71

Example. In the game in Figure 5.2, team MAX (of one agent) has complete information

and team MIN (of one agent) has single-agent incomplete information. If we change

the owner of MIN’s decision nodes to a second agent of MAX (and change their

utility function accordingly so that two agents of MAX always have the same payoffs),

then team MAX (now of two agents) has multi-agent incomplete information. See

also Subsection 5.3.3 for more examples of CGIIs involving teams with multi-agent

incomplete information.

It should now be clear that a CGII defines a game with incomplete information

(in which all state games have the same game tree with no chance node and only

public actions), which itself defines an EFG of chance via the Harsanyi model (cf.

Subsection 5.2.1). Due to the public actions property, there is a close link between

the degree of incomplete information of a team in a CGII and the degree of imperfect

information of the player corresponding to this team in the EFG defined by the CGII:

• a team with complete information in the CGII is a player with perfect information

in the EFG;

• a team with single-agent incomplete information in the CGII is a player with

perfect recall in the EFG;

• a team with multi-agent incomplete information in the CGII is a player with

multi-agent perfect recall in the EFG.

Team maxmin in a CGII

A pure strategy of a team is uniquely defined by the pure strategy of each of its players.

Definition 5.2.6 (Pure strategy of a team). A pure strategy of a team T ⊆ � is a tuple

of the form BT = (B8)8∈T with B8 ∈ Σ
P
8 for all 8 ∈ T .

In particular, the set of pure strategies of a teamT , denoted byΣP
T

, is in bijection with∏
8∈� Σ

P
8 . In the following, we also write ΣP

−T
=

∏
8∉T Σ

P
8 , the set of all combinations

of pure strategies of the players not in T .

Definition 5.2.7 (Pure maxmin for a team). The pure maxmin value for a team T ⊆ �
is defined to be

ET ≔ max
BT ∈Σ

P
T

min
B−T ∈Σ

P
−T

UT (BT , B−T).

Remark. The pure maxmin for T is well-defined since all agents in T share the same

expected utility function, which we denote byUT .

Similarly, the notion of behaviour maxmin and mixed maxmin for a team2 are

also well-defined, though we do not elaborate on them here, since we mostly focus on

complexity-theoretic and algorithmic aspects of pure maxmin.

In the following, we focus on zero-sum two-team CGIIs. We call the two teams

player MAX and player MIN, and denote them by + and −, respectively. We emphasise

again that MAX and MIN in a CGII are players with multi-agent perfect recall in the

two-player EFG of chance defined by the CGII.

2Recall that in the literature of team games, behaviour maxmin and mixed maxmin for a team are called

TME (team maxmin equilibrium) and TMECor, respectively; see Subsection 2.2.2.

72 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

5.2.3 Motivation for CGIIs

Our motivations for introducing CGII as a subclass of games with incomplete informa-

tion are multiple.

Conceptual motivations

First of all, the initial idea of CGII comes from the need for a simple and minimal

formalism (of subclasses of EFG games) that is capable of modelling the card play part

of Bridge, the game that inspires various topics discussed in this dissertation. Recall (cf.

Appendix A.4) that the card play part of Bridge is essentially a game with incomplete

information in which there is one agent of MAX and two agents of MIN, and all state

games have only public actions and no chance node. Hence, CGII, as it is defined in

this dissertation, is a perfect fit for modelling Bridge.

Secondly, the formalism of CGIIs aims to be a minimal generalisation of that of

combinatorial games to allow incomplete information.3 Indeed, it is clear that a two-

team CGII with a singleton universe is a combinatorial game. As a matter of fact,

the name combinatorial game with incomplete information is chosen to reflect this

inspiration from combinatorial games.

Lastly, but maybe most importantly, the formalism of CGII also aims to minimally

capture the essence of incomplete information. Due to the public actions property,

the only source of the imperfect (in particular, incomplete) information of every player

comes from the initial drawing of the real world. As stated above, if the real world is

common knowledge, or equivalently if the universe of a CGII is a singleton, then the

game will be with perfect information and no chance (i.e. a combinatorial game).

Essence of incomplete information

Let us look more closely at this last motivation. Recall that in Chapter 4, many proofs of

hardness involve constructing an EFG that has concurrent actions (among agents of the

same or different teams). For instance, in the proofs of Proposition 4.2.10 (page 40) and

Proposition 4.2.11 (page 40), we have essentially constructed the same game, which

involves concurrent actions between MAX and MIN: MAX needs to pick a colour

according to the vertex picked by Nature; MIN needs to pick a colour and an edge. By

letting MAX move before MIN, we get an EFG in which MAX has PI but MIN has PR;

otherwise, by letting MIN move before MAX (and Nature), we get an EFG in which

MIN has PI but MAX has PR.

We believe this is in some way cheating: these two EFGs describe the same inter-

action between MAX and MIN, but MAX (likewise for MIN) has perfect information

in one but imperfect information in the other. It is even more troubling to notice that

in the EFG in which MAX has PI, MAX does not have more knowledge than they have

in the other EFG, in which they only have PR. Indeed, before they make their decision

in both EFGs, MAX only learns about the vertex chosen by Nature, but not about the

choices of MIN.

Hence, the different degrees of imperfect information such as PI and PR do not

capture the essence of incomplete information, which is a notion more about the

knowledge of a player. That is why we consider games with public actions such

as CGIIs. In such games, the paradox of information above, caused by different

3Recall that combinatorial games are two-player games of no chance and with perfect information (hence

a fortiori public actions); see Subsection 2.2.3 for references on this subject.

5.3. COMPLEXITY OF CGIIS 73

chronological orders of concurrent actions, does not exist. In addition, the knowledge

of the players is captured by the Aumann model and the initial drawing of the real world.

Since what interests us most is to establish a close link between the difficulty (i.e.

computational complexity) of solving a game and the lack or not of knowledge (i.e.

incomplete or complete information) of the players in the game, we strongly argue that

CGII rather than EFG is the right model for studying sequential multi-agent interactions.

If CGIIs are as hard to solve as EFGs with concurrent or hidden actions, this confirms our

intuition that the difficulty of a game actually comes from the incomplete information of

a player (generated by a single initial drawing over the universe), not from their inability

to observe the actions chosen by the other players.

Expressiveness of CGIIs

At first sight, the requirements of no chance and public actions seem particularly

restrictive: many popular tabletop games with incomplete information allow private

actions (e.g. concealed Kong in Mahjong, pass in Hearts) or have randomness and

chance factors beside the initial drawing (e.g. dice rolls during a game). One may

worry that due to these restrictions, CGII is not expressive enough to be conceptually

or algorithmically interesting. However, we argue that this impression is not correct.

First, an initial drawing over the universe is actually quite expressive. For example,

for the dice rolls we evoke above, if their number and occasions are fixed in advance, then

their results can be encoded into the initial drawing of worlds. Another example is given

by video games, which typically use a random seed as the sole source of randomness for

all procedurally generated levels and random events during a playthrough. Similar ideas

have been investigated in automated planning (Palacios and Geffner, 2009, Sec. 10).

Second, even with only public actions, we will show later in Subsection 5.3.3 that we

can still design a game to force a team of players to coordinate their actions. This means

that we can essentially encode concurrent actions (as in standard Matching Pennies)

using only public actions (and no chance except the initial drawing).

Moreover, as we shall see, CGIIs are as hard to solve as EFGs, which confirms our

intuition that the difficulty of a game actually comes from the incomplete information

of a player, and not from their inability to observe the moves made by the other players.

All in all, we suggest that at least as far as computation of optimal strategies is

concerned, CGII, rather than EFG, be the right formalism for studying sequential multi-

agent interactions depending on each player’s knowledge. We will also see that many

algorithmic and epistemic ideas that apply to CGII are also applicable to more general

games. These reasons firmly justify our decision to focus on CGIIs in the rest of this

dissertation.

5.3 Complexity of CGIIs

Parallel to EFGs (cf. Section 4.2), the decision problem Pure Maxmin for CGIIs is

defined as follows.

Definition 5.3.1 (Pure Maxmin for CGIIs). Let G be a class of zero-sum CGIIs. Then

Pure Maxmin(G) for CGIIs is the following decision problem.

Input A CGII � ∈ G and a rational number <.

Output Decide whether E+ (Σ
P
+, Σ

P
−) ≥ < holds in �.

74 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

In the following, we study the complexity of Pure Maxmin for CGIIs in terms of

different degrees of incomplete information for MAX and MIN: complete information

(CI), single-agent incomplete information (SA-II), multi-agent incomplete information

(MA-II). For complexity analyses, we consider the parameters |) | (the number of nodes

in the public tree of a CGII), |* | (the number of worlds in the universe), and eventually

the number of bits to encode the payoffs, the common prior, and the threshold <.

5.3.1 Summary of results

The complexity of Pure Maxmin for CGIIs is summarised in Table 5.1. By definition,

the complexity of each case is increasingly monotone both in MAX’s degree of incom-

plete information (CI/SA-II/MA-II) and in MIN’s degree of incomplete information.

Hence, Table 5.1 only gives the references for the key hardness (“h”) and membership

(“m”) results; the other results can be deduced using monotonicity. Note that results

written in bold font are new from our work; the others can be directly deduced from the

literature.

MAX

MIN
CI SA-II MA-II

CI P [m: 4.2.9] NP-c [h: 5.3.2] �
P

2
-c [h: 5.3.7]

SA-II NP-c [h: 5.3.3] NP-c �
P

2
-c

MA-II NP-c NP-c [m: 4.2.3] �
P

2
-c [m: 4.2.14]

Table 5.1: Complexity of Pure Maxmin for CGIIs.

As we have stated before, a CGII in which teams have CI (respectively SA-II or

MA-II) is a game of chance in which players have perfect information (respectively

perfect recall or multi-agent perfect recall). Hence, all membership results in Table 5.1

follow directly from those in Table 4.1 (page 36).

In the following, we first consider hardness results for two-agent CGIIs, i.e. CGIIs in

which both MAX and MIN are single-agent (hence have either complete or single-agent

incomplete information). Then we study the more complicated case in which teams are

multi-agent.

5.3.2 Hardness for two-player CGIIs

Proposition 5.3.2. Pure Maxmin is NP-hard for CGIIs in which MAX has CI and MIN

has SA-II. The result holds even under the restriction to Boolean games.

Proof. We give a reduction from Vertex Cover, which is defined as follows:

Input A non-directed graph (+, �), a natural number : .

Output Decide whether the graph has a vertex cover of size at most : .4

Let
(
(+, �), :

)
be an instance of Vertex Cover. Without loss of generality, we

assume that : ≤ |� |, otherwise, the problem is trivial. Construct the following instance

of Pure Maxmin:

4A vertex cover of a graph is a subset of vertices that contains at least one endpoint of every edge of the

graph.

5.3. COMPLEXITY OF CGIIS 75

Players MAX, who has complete information; MIN, who has single-agent incomplete

information.

Aumann model The universe is * = {l4 | 4 ∈ �}. R+ is the finest equivalence

relation, while R− is the coarsest one. The common prior over the universe is the

uniform one.

Public game tree The game proceeds as follows: MAX chooses a vertex E ∈ + , then

MIN chooses an edge 4′ ∈ � .

Payoffs for MAX The payoffs are Boolean. In world l4, MAX gets a payoff of 1 if E

is an endpoint of 4 and 4 ≠ 4′; otherwise, MAX gets 0.

Maxmin The threshold of maxmin value is 1 − :
|� | .

This polynomial-time construction yields a Boolean CGII in which MAX has com-

plete information and MIN has single-agent incomplete information. Now we show

that the reduction works: the graph (+, �) has a vertex cover of size at most : if and

only if the maxmin value of the constructed game is at least 1 − :
|� | .

=⇒ Suppose first that (+, �) has a vertex cover of size at most : . Let + ′ be such a

vertex cover. Notice that MAX can choose a vertex according to the edge 4 since MAX

has complete information. Now consider MAX’s strategies that consist in choosing E to

be in the intersection of + ′ and the endpoints of 4, which is always non-empty because

+ ′ is a vertex cover. Now we need to show that these strategies guarantee a payoff of at

least 1 − :
|� | .

Notice that under these strategies, only vertices in + ′ will ever be chosen by MAX;

in other words, in no world will MIN observe that MAX picks a vertex not in + ′.5

Since MIN does not observe 4, they can only base their choice of 4′ on E, the

vertex chosen by MAX. Intuitively, MIN needs to guess the edge chosen by the initial

drawing, based on the vertex picked by MAX, to yield a reward of 0 for MAX. However,

regardless of what MIN’s pure strategy is, they can only guess correctly in at most one

world in which MAX picks E; in other such worlds in which MIN makes a wrong guess,

MAX gets 1. Since this holds for each E chosen by MAX in at least one world, which

is necessarily in + ′, we deduce that among all |� | worlds, MAX gets 0 in at most

|+ ′ | ≤ : ≤ |� | worlds. This means the reward for such strategies is at least 1 − :
|� | ,

therefore the maxmin value is also at least 1 − :
|� | .

⇐= Conversely, suppose that (+, �) has no vertex cover of size at most : , i.e. all

vertex covers of the graph have size at least : + 1. It is clear that |� | ≥ : + 1; otherwise,

the graph must have a vertex cover of smaller size.

Notice that it is a dominating strategy for MAX to always choose a vertex E that is

an endpoint of the edge 4. Indeed, if MAX does not choose an endpoint of 4, they get

0; if they do, they get 1 or 0, depending on MIN’s choice 4′. Hence, we only need to

show that for all such strategies, MAX cannot guarantee a reward of at least 1 − :
|� | .

Consider one such strategy, and let+ ′ be the set of vertices that are picked by MAX

in at least one world. Then by definition of this strategy, + ′ is a vertex cover of the

graph, hence has a size of at least : + 1. Now, for each E ∈ + ′, let MIN play an edge

5On the other hand, it is not necessarily the case that every vertex in + ′ is picked by MAX in at least one

world; this is only true if + ′ is a minimal (by inclusion) vertex cover of the graph.

76 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

4E which is such that MAX picks E in world l4E . Then for each E ∈ + ′, MAX gets 0

in world l4E . Since 4E ≠ 4E′ for E ≠ E′ (by definition MAX picks E in world l4E but

E′ in world l4′E), this means MAX gets 0 in at least |+ ′ | ≥ : + 1 worlds; hence MAX

has an expected reward of at most 1 − :+1
|� | against this strategy of MIN. This being true

for all dominant strategies of MAX, the maxmin value for MAX is strictly less than

1 − :
|� | . □

Remark. Proposition 5.3.2 generalises Proposition 4.2.10 (page 40), but is more

difficult to prove since we only allow games with public actions. In particular, the

reduction from 3-Colouring in the proof of Proposition 4.2.10 no longer works, since

this reduction requires that MIN be unable to observe MAX’s choice of colour.

Proposition 5.3.3. Pure Maxmin is NP-hard for CGIIs in which MAX has SA-II and

MIN has CI. The result holds even under the restriction to Boolean games.

Proof. This result has been established by Frank and Basin (2001, Section 6) using a

reduction from the NP-complete problem Clique, which is stated as follows:

Input A non-directed graph (+, �), a natural number : .

Output Decide whether the graph has a clique6 of size at least : .

Here, we reproduce their proof under our formalism and fill in all the details.

Let
(
(+, �), :

)
be an instance of Clique. Construct the following instance of Pure

Maxmin:

Players MAX, who has single-agent incomplete information; MIN, who has complete

information.

Aumann model The universe is * = {lE | E ∈ +}. R− is the finest equivalence

relation, while R+ is the coarsest one. The common prior over the universe is the

uniform one.

Public game tree The game proceeds as follows:

• At the root, MIN chooses a vertex E′ ∈ + .

• MAX chooses between ✓ and ×, then the game ends.

Payoffs for MAX The payoffs are either 1 or 0. In the world lE:

• if MAX has chosen ✓, MAX gets a payoff of 1 if and only (E, E′) ∈ � ;

• otherwise, MAX gets a payoff of 1 if and only if E ≠ E′.

Maxmin The threshold of maxmin value is :
=
.

This polynomial-time construction yields a Boolean CGII in which MAX has single-

agent incomplete information and MIN has complete information. Now we show that

the reduction works: the graph (+, �) has a clique of size at least : if and only if the

maxmin value of the constructed game is at least :
=
. First, notice that MAX’s pure

strategies are in bijection with subsets of + : a subset + ′ ⊆ + corresponds to MAX’s

pure strategy by which MAX chooses ✓ if E′ ∈ + ′, × otherwise; vice versa.

6A clique of a graph is a complete subgraph.

5.3. COMPLEXITY OF CGIIS 77

E1

E2

E3 E4 E5

r

E1

(
1
1
1
0
0

) (
0
1
1
1
1

)
E2

(
1
1
1
0
0

) (
1
0
1
1
1

)
E3

(
1
1
1
1
0

) (
1
1
0
1
1

)
E4

(
0
0
1
1
1

) (
1
1
1
0
1

)
E5

(
0
0
0
1
1

) (
1
1
1
1
0

)

Figure 5.3: An instance of Clique with : unspecified (on the left) and the Boolean

CGII constructed from it (on the right), where the rewards for MAX are written in

vectors in which the 8-th component corresponds to MAX’s reward in world lE8 . This

example is also taken from the article by Frank and Basin (2001).

=⇒ Suppose that the graph (+, �) has a clique of size at least : , the set of vertices of

which is denoted by + ′. We now show that + ′ corresponds to a pure strategy of MAX

with a payoff of at least :
=
. Let lE ∈ * be the world chosen by Nature. Suppose E ∈ + ′.

If MIN chooses a vertex E′ ∈ + ′, then MAX will choose ✓, which yields a payoff of 1

since E and E are both in + ′, which is a clique. If MIN chooses a vertex E′ ∉ + ′, then

MAX will choose ×, which also yields a payoff 1 since E ≠ E′. In summary, whenever

the real world is lE with E ∈ + ′ (which happens with a probability of at least :
=

since

|+ ′ | ≥ :), regardless of what MIN chooses, MAX gets a payoff 1 under the pure strategy

corresponding to + ′, which means this strategy has a guaranteed payoff of at least :
=
.

⇐= Conversely, suppose that the graph (+, �) does not have a clique of size at least

: . We now show that no pure strategy of MAX can guarantee a payoff of at least :
=
. Let

+ ′ ⊆ + be a pure strategy of MAX. Let + ′′ ⊆ + ′ be a maximal clique in the subgraph

of (+, �) induced by + ′, then |+ ′′ | < : . Let lE ∈ * be the world chosen by Nature.

• Suppose E ∉ + ′. Then MIN can choose E, after which MAX will choose × under

the pure strategy + ′ and will therefore receive a payoff of 0.

• Suppose E ∈ + ′ \+ ′′. Then there exists E′ ∈ + ′′ such that (E, E′) ∉ � (otherwise

+ ′′ ∪ {E} would be a larger clique than + ′′, contradicting the maximality of + ′′).

Then MIN can choose this vertex E′ ∈ + ′, after which MAX will choose ✓ under

the pure strategy + ′ and receive a payoff of 0.

Therefore, whenever E ∉ + ′′ (which happens with probability 1 −
|+ ′′ |
=

> 1 − :
=
), MIN

has a strategy such that MAX receives 0 as payoff. As a result, MAX’s guaranteed

payoff under the pure strategy + ′ is strictly smaller than :
=
. □

5.3.3 Multi-agent coordination in CGIIs

Now we turn our attention to two-team CGIIs. Notice that concurrent actions, which

we have used many times to show hardness results for EFGs with multi-agent perfect

recall, cannot be naı̈vely modelled in CGIIs. Indeed, CGIIs only allow public actions,

while concurrent actions require that agents in the same team be unable to observe

the others’ action. All hope is not lost: we show in this subsection how to construct

CGIIs to impose perfect coordination between two agents in the same team, just as with

concurrent actions in EFGs.

78 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

Coordination game

We first consider the following simple Boolean CGII, which we call coordination game.

In this game, there are two agents of MAX, referred to as MAX 1 and MAX 2, and no

agent of MIN; the universe has 4 worlds and reads * = {(11, 12) | 11, 12 ∈ B}; the

Aumann model is such that MAX 8 only knows 18 for all 8;7 the common prior over *

is the uniform one; the public tree is the one shown in Figure 5.4; the reward for MAX

is 1 if and only if 01 ⊕ 11 = 02 ⊕ 12, where ⊕ is the exclusive or of two bits and 08 is

the action chosen by MAX 8.

A

0 1

=0

0 1

=1

0 1

Figure 5.4: The public tree of the coordination game.

We refer to 18 as the hidden bit of MAX 8 since it is only observable by MAX 8. The

coordination game is designed in such a way that MAX 1 and MAX 2 must perfectly

coordinate their answer in order to win. Intuitively, MAX 1 and MAX 2 need to agree

on the same answer � ∈ B, then stick to it during the game by playing 08 = � ⊕ 18 .
Indeed, if they employ this strategy, then they guarantee a win since

01 ⊕ 11 = (� ⊕ 11) ⊕ 11 = � = (� ⊕ 12) ⊕ 12 = 02 ⊕ 12.

Remark. Under these two winning strategies (one for each value of �), both MAX 1

and 2 pick the actions 0 and 1 with equal probability. Indeed, once the common answer

� is fixed, which action to play by MAX 8 is dictated by their hidden bit 18 . Hence,

the bits 11 and 12 acts as the keys of a one-time pad and perfectly8 encrypt/mask the

intended answer (i.e. �) of MAX 1 and 2. This is the key element to ensure that MAX 1

and 2 must cooperate without cheating.

To show that this is the only viable winning strategy, let us consider other strategies

for team MAX. First, notice that the strategies of MAX 1 can be written in the form

(00
1
, 01

1
), which means they choose 00

1
if 11 = 0 and 01

1
if 11 = 1. As for MAX 2, they

have the right to pick 02 as a function of 01 and 12.

• Suppose MAX 1 plays (0, 0) (i.e. they always play 0, regardless of what 11 is) for

0 ∈ B. Then MAX 2 has no winning strategy: regardless of what MAX 2 picks,

they lose in at least one world: since 0 ⊕ 0 ≠ 0 ⊕ 1, for every 12, the winning

condition 01 ⊕ 11 = 02 ⊕ 12 cannot be satisfied for both values of 11.

• Suppose now MAX 1 plays (0, 0′) with 0 ≠ 0′ (hence it can also be written as

(0, 0 ⊕ 1)). Now, to satisfy 01 ⊕ 11 = 02 ⊕ 12, MAX 2 is forced to play 0 ⊕ 12.

Remark. We give an intuition for these two cases:

7By “only knowing 18” we mean two worlds are in the same equivalence class of MAX 8 if and only if

18 has the same value in these two worlds. We will use the expression “only know”, “only learn”, or “only

observe” with this semantics in the description of other Aumann models.
8In the sense of information-theoretic security (Shannon, 1949).

5.3. COMPLEXITY OF CGIIS 79

• If MAX 1 cheats by using their hidden bit 11 incorrectly (i.e. does not use 11 to

encrypt their intended answer and always picks the same action), then MAX 2

cannot cooperate perfectly since they cannot observe the value of 11.

• If MAX 1 plays correctly (i.e. chooses a strategy of the form (0, 0⊕1)), then MAX

2 must pick 0 as their intended answer and mask it with their own bit 12 in order

to win.

Notice that in the second case, the action 02 chosen by MAX 2 is actually proba-

bilistically independent of the action 01 chosen by MAX 1. This is an important feature

of the coordination game, and we will return to this point shortly.

In summary, we have established the following result.

Proposition 5.3.4. In a coordination game, team MAX guarantees a win (i.e. an

expected reward of 1) if and only if they play a strategy of the following form: MAX 8

plays � ⊕ 18 for some � ∈ B. Otherwise, their expected reward is strictly less than 1.

Remark. Strictly speaking, the hidden bit of MAX 2 is not necessary in a coordination

game. However, this bit will be useful if we also need to mask the answer of MAX 2,

e.g. in games in which MIN are not allowed to deduce information from the answer of

any agent of MAX.

Interrogation game

Consider the following situation, called interrogation: we have a finite set of questions

&, and MAX has a Boolean answer for each question {�@ ∈ B}@∈&, or equivalently

a mapping from & to B. We wish to verify whether MAX’s mapping satisfies some

given binary constraints {�@@′ ⊆ B2 | @, @′ ∈ &, @ ≠ @′}: MAX’s mapping is said to

satisfy the constraint �@@′ if (�@ , �
′
@) ∈ �@@′ ; MAX’s mapping is said to be valid if it

satisfies all constraints.

Example. For interrogation about 2-colourings of a given graph, the questions are the

vertices of this graph; MAX’s mapping is their colouring of the graph by two colours,

and their answer to a vertex corresponds to the colour they assign to this vertex; the

binary constraints impose the requirement that two vertices related by an edge cannot

have the same colour. Concretely, �EE′ = {(0, 1), (1, 0)} if (E, E′) is an edge, otherwise

�EE′ = B2. Then MAX’s mapping is valid if and only if it describes a 2-colouring of the

graph.

Similarly, one can also think of interrogations about other structures over graphs,

such as cliques and independent sets.

Our goal is to construct a CGII of size polynomial in |& |, the number of questions,

such that MAX can guarantee a win in this game if and only if there is a valid mapping

from |& | to B. Obviously, we need to verify that (�@ , �
′
@) ∈ �@@′ for all @ ≠ @′.

However, it is not clear how we can achieve this when there is only one agent of MAX

in the game9: we cannot question MAX about @ and @′ sequentially, for MAX can

adapt their answer to @′ based on their answer to @; neither can we ask MAX about

their answers to all questions simultaneously, for it would require a game tree of size

9Although we will not prove it formally, such a construction of a CGII of polynomial size involving only

one agent of MAX and no MIN is impossible unless P = NP, for the following reason: the pure maxmin

value of such a CGII can be computed in polynomial time, while the pure maxmin value of CGIIs encoding

situations of interrogation is NP-hard to compute since Clique can be reduced to such an interrogation.

80 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

exponential in |& |. We should exploit the presence of a second agent of MAX. Again,

we cannot naı̈vely ask MAX 1 about @ and MAX 2 about @′, for the answer of MAX 1

to @ is public and MAX 2 can adapt their answer to @′ based on this answer. To solve

this problem, we reuse the core idea of coordination games: encrypting the answer of

each agent so that they cannot answer the questions adaptively.

Consider the following Boolean CGII, which we call interrogation game: two

agents of MAX (MAX 1 and MAX 2), and no agent of MIN; the universe reads

* = {(@1, 11, @2, 12) | @1, @2 ∈ &, 11, 12 ∈ B}; the Aumann model is such that MAX

8 only knows @8 and 18 for all 8; the common prior over * is the uniform one; the

public tree is the same one as for the coordination game (i.e. the one in Figure 5.4); the

reward for MAX is 0 if either (1) @1 = @2 but 01 ⊕ 11 ≠ 02 ⊕ 12
10 or (2) @1 ≠ @2 but

(01 ⊕ 11, 02 ⊕ 12) ∉ �@1@2
, and 1 otherwise.

Notice that this CGII has size O(|& |2): the universe has size O(|& |2), while the

public tree has size O(1). We refer to (@8 , 18) as the hidden information of MAX 8.

Inspired by the coordination game, we propose the following definition.

Definition 5.3.5 (Perfect coordination). In an interrogation game, a perfect coordina-

tion of team MAX is a pure strategy of MAX of this form: there is a set {�@ ∈ B}@∈&
such that for all 8, MAX 8 will play the action 08 = �@8 ⊕ 18 in all worlds in which

their hidden information is (@8 , 18). For such a strategy, the set {�@}@∈& is called the

intended mapping or intended answer of the perfect coordination.

By a similar argument to the one for the coordination game, the reward condition

(1) ensures that MAX 1 and 2 have an incentive to implement a perfect coordination.

Otherwise, if there is a @ ∈ & such that MAX 1 and 2 do not choose their action as

in a perfect coordination, then whenever @1 = @2 = @, which happens with a non-zero

probability due to the uniform prior, they will lose with a non-zero probability as shown

in the argument for the coordination game. Hence, perfect coordination is a dominant

strategy. In other words, (1) imposes non-adaptivity of MAX’s answers.

Next, the reward condition (2) ensures that all binary constraints are satisfied by the

intended mapping of a perfect coordination, since by (1) we have 08 ⊕ 18 = �@8 for all 8.

In summary, we have established the following result.

Proposition 5.3.6. In an interrogation game, team MAX can guarantee a win (i.e. an

expected reward of 1) if and only if they implement a perfect coordination and the

intended mapping of this perfect coordination is valid.

Moreover, notice that a coordination game is just an interrogation game in which

there is only one question (hence no binary constraint).

Interrogation game with :-ary constraints

It is straightforward to extend the idea of interrogation games to allow constraints to be

:-ary with : ≥ 2.

Example. For interrogation about the satisfiability of a 3-CNF, the questions are the

variables appearing in the 3-CNF; MAX’s mapping is their assignment to the variables;

for each clause in the 3-CNF, we have a ternary constraint to impose the requirement

that the assignment of MAX satisfies this clause. Then MAX’s mapping is valid if and

only if it is an assignment that satisfies the 3-CNF.

10Recall that 08 is the action chosen by MAX 8 during the game.

5.3. COMPLEXITY OF CGIIS 81

For all fixed : ≥ 2, the construction of an interrogation game with :-ary constraints

is straightforward. Concretely, we can consider the following Boolean CGII: : agents of

MAX; the universe reads* = {(@1, 11, . . . , @: , 1:) | @1, . . . , @: ∈ &, 11, . . . , 1: ∈ B};
the Aumann model is such that MAX 8 only observes @8 and 18 for all 8; the common

prior over * is the uniform one; the public tree is such that each agent of MAX

sequentially choose between 0 and 1; the reward for MAX is 0 if either (1) @8 = @ 9 but

08 ⊕ 18 ≠ 0 9 ⊕ 1 9 for some 8 and 9 , or (2) (01 ⊕ 12, . . . , 0: ⊕ 1:) ∉ �@1 · · ·@: for some

@1, . . . , @: ∈ &, and 1 otherwise.

Such an interrogation game has size O(2: |& |:), which is still polynomial in |& |
for all fixed : . This is an important feature since for an interrogation for a class of

problems, |& | is usually the size of the instance (e.g. the size of a graph, of a 3-CNF

formula, etc.), while : is fixed for all instances from the same class of problems (e.g.

: = 2 for all 2-colouring problems and : = 3 for all 3-SAT problems).

Interrogation game for MIN

For all : ≥ 2, one can also construct interrogation games with :-ary constraints for

MIN. The construction, which now involves : agents of MIN and no agent of MAX, is

very similar to the one for MAX. It suffices to modify the reward function such that the

reward for MAX is 1 if either (1) @8 = @ 9 but 08 ⊕ 18 ≠ 0 9 ⊕ 1 9 for some 8 and 9 , or (2)

(01 ⊕ 11, . . . , 0: ⊕ 1:) ∉ �@1 · · ·@: for some @1, . . . , @: ∈ &, and 0 otherwise.

In such an interrogation game, if MIN does not implement a perfect coordination,

then they are caught with a probability of at least 1/(2|& |)2; while if MIN implements

a perfect coordination, but their intended mapping is not valid, they are caught with a

probability of at least 1/|& |: . Hence, if there is no valid mapping for an interrogation,

MAX has a guarantee payoff of at least min(1/(2|& |)2, 1/|& |:) > 0; if there is a valid

mapping, then MIN can guarantee a payoff of 0 for MAX by implementing a perfect

coordination for a valid mapping.

5.3.4 Hardness for two-team CGIIs

With the gadgets from the last subsection, we are ready to study the complexity of

two-team CGIIs. The cases in which MAX has multi-agent incomplete information

while MIN has complete or single-agent incomplete information are both NP-hard due

to the NP-hardness from Proposition 5.3.3 and in NP by Proposition 4.2.3 (page 36).

Therefore, they are both NP-complete. We thus focus on games in which MIN has only

multi-agent incomplete information.

Our proof will be based on a reduction from the ΣP
2
-complete problem (Umans,

1999) Succinct Set Cover, which is defined as follows:

Input A collection11 (= {i1, . . . , i<} of 3-DNF formulae on = variables, and an

integer : .

Output Decide whether there exists a subcollection (′ ⊆ (of size at most : and the

disjunction of which is a tautology: ∨i∈(′i ≡ 1.

Remark. We can duplicate the elements in the initial collection (to form a new

collection S that contains each 3-DNF three times. It is clear that for all 1 ≤ : ≤ |(|, (
has a tautological disjunction of at most : of its DNFs if and only if the new collection

S has a tautological disjunction of at most : of its DNFs. As a result, every instance

11A collection, in contrast to a set, can contain two identical elements.

82 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

((, :) of Succinct Set Cover can be reduced to another instance (S, :) such that

:/|S| ≤ |(|/|S| = 1/3. Therefore, without loss of generality, we may suppose that all

instances ((, :) of Succinct Set Cover satisfy 1 ≤ : ≤ |(|/3.

We first reprove Proposition 4.2.12 (page 41) with a reduction from Succinct Set

Cover to illustrate the core idea of simulating finding a set cover by playing a game.

Then, we will show how to augment this proof so that we obtain a CGII instead of just

an EFG.

Proof redux of Proposition 4.2.12. Let ((, :) be an instance of Succinct Set Cover,

where (is a collection of 3-DNF formulae on a set - of = variables and : satisfies

1 ≤ : ≤ |(|/3.

Players A player MAX with perfect information, and a player MIN with multi-agent

perfect recall controlling 3 agents with perfect recall, who are referred to as

MIN 1, 2, and 3.

Game tree The game begins with a chance node as root and proceeds as follows:

• At the root, Nature chooses uniformly at random a 3-DNF i ∈ (.

• MAX observes the choice of Nature, and chooses between ✓ and ×.

• Without observing the choice of Nature or MAX, MIN 1 chooses between

Size, which ends the game, or Tautology.

• If MIN 1 has chosen Tautology, Nature chooses uniformly at random three

variables G1, G2, G3 ∈ - and shows G8 only to MIN 8.

• Each agent of MIN simultaneously chooses between 1 or 0 for the variable

shown by Nature to them, and the game ends.

Payoffs for MAX MAX only receives a non-zero payoff in the following cases:

• If MIN 1 chooses Size, MAX receives 1 if they have chosen ×.

• If MIN 1 chooses Tautology:

– If G8 = G 9 for some 8 ≠ 9 but MIN 8 and 9 have chosen a different

assignment for this same variable, MAX receives =2;

– Otherwise, if MAX has chosen✓ and a term in the 3-DNF i is satisfied

by the assignments chosen by the 3 agents of MIN, MAX receives |(|=3.

Maxmin The threshold of maxmin value is 1 − :/|(|.

The intuition behind this construction is as follows:

• MAX’s pure strategies are in bijection with the subcollections of (.

• By playing Size, MIN 1 can end the game with a payoff of 1− |(′ |/|(| for MAX,

where (′ ⊆ (is the pure strategy employed by MAX. This allows MIN to verify

that MAX does not choose a subcollection with a size larger than : .

• If the disjunction of (′ is not a tautology, then MIN 1 can play Tautology and

the agents of MIN pick an assignment such that the disjunction of (′ evaluates to

false, which will ensure a payoff of 0 for MAX.

5.3. COMPLEXITY OF CGIIS 83

• The agents of MIN cannot afford to cheat by playing different assignments since

they will be caught with a certain probability, which will yield a large reward for

MAX.

The construction is polynomial-time in the input ((, :). Indeed, the game tree is

of size O(|(|=3). In addition, MAX has perfect information, and MIN has multi-agent

perfect recall. We now show that there exists a subcollection (′ ⊆ (of size at most :

such that its disjunction is a tautology if and only if this game has a maxmin value of at

least 1 − :/|(| > 0.

=⇒ Suppose that there is a subcollection (′ ⊆ (of size at most : and the disjunction

of which is a tautology. Let us consider MAX’s pure strategy corresponding to (′, which

consists in playing ✓ if Nature chooses a 3-DNF that is in (′, × otherwise.

• If MIN 1 plays Size, then MAX receives a expected payoff of 1 − |(′ |/|(| ≥
1 − :/|(|.

• Consider now the case in which MIN 1 plays Tautology. The pure strategies of

each agent of MIN in the remainder of the game are in bijection with the possible

assignments of - . If any two agents of MIN play different assignments, then

their disagreement is caught with a probability at least 1/=2 (whenever a variable

on which their assignment differs is chosen by Nature for both of them), which

yields an expected payoff of at least 1 for MAX. Suppose now all three agents

agree on an assignment. Since the disjunction of (′ is a tautology, whatever the

common assignment is, there is a term C from a 3-DNF i in (′ that is satisfied by

this assignment. Since Nature chooses i and the 3 variables in C with probability

at least 1/(|(|=3), this means MAX has an expected payoff of at least 1.

Hence, (′ guarantees an expected payoff of at least 1 − :/|(|.

⇐= Conversely, suppose that there is no subcollection of (of size at most : the

disjunction of which is a tautology. Let (′ be an arbitrary pure strategy of MAX.

• If |(′ | > : , then by playing Size, MIN 1 limits MAX’s expected payoff to be

1 − |(′ |/|(| < 1 − :/|(|.

• Suppose now |(′ | ≤ : , then the disjunction of (′ is not a tautology. Hence,

there is an assignment of - such that no term in any DNF in (′ is satisfied. If

MIN 1 plays Tautology and then all 3 agents of MIN choose this assignment,

MAX always get a payoff of 0 < 1 − :/|(|, regardless of what Nature chooses as

DNF and variables.

This being true for all (′ ⊆ (, the maxmin value is strictly less than 1 − :/|(|. □

Now, our goal is to prove the following, which encompasses all cases in which MIN

only has multi-agent incomplete information.

Proposition 5.3.7. Pure Maxmin is ΣP
2
-hard for CGIIs in which MAX has complete

information and MIN has multi-agent incomplete information.

We will establish this by a reduction from Succinct Set Cover. The core idea

is similar to the previous reduction. However, this time we need to construct a CGII

instead of an EFG, which will necessitate many complicated modifications. Hence, we

84 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

motivate every such modification in the following before presenting the lengthy proof

itself.

The concurrent actions between the agents of MIN (after MIN 1 has played

Tautology) can be replaced by an interrogation game gadget with 3 agents of MIN,

which necessitates the introduction of three hidden bits, one for each MIN. However,

this modification is not enough, for MIN can now observe MAX’s choice (between ✓

and ×). This allows MIN 1 to ensure a reward of 0 for MAX by playing Size when

MAX plays ✓ and Tautology when MAX plays ×.12

So we also need to somehow mask MAX’s action, which can be achieved by granting

a hidden bit 1+ to MAX. Hence, we consider a CGII with the universe

* = {(i, 1+, G1, 11, G2, 12, G3, 13) | i ∈ (, G1, G2, G3 ∈ -, 1+, 11, 12, 13 ∈ B},

and an Aumann model such that MAX has complete information, and MIN 8 only knows

G8 and 18 .

Now we have a new problem: without a second agent of MAX (unlike in an

interrogation game for MAX), we cannot assure that this single agent of MAX uses 1+
correctly to encrypt their answer. In addition, the player MAX in the previous reduction

from Succinct Set Cover cannot choose their action according to the variables that

Nature chooses to interrogate the agents of MIN; while the player MAX in the above

CGII can do this since they have complete information, and in particular they know the

variables and hidden bits of the agents of MIN.

Let us write " = (- × B)3 and let < = (G1, 11, G2, 12, G3, 13) ∈ " be an arbitrary

combination of the information of the agents of MIN. We need to find a way to punish

MAX so that the following two conditions are satisfied:

1. For all i ∈ (and all 1+ ∈ B, the action chosen by MAX (between ✓ or ×) in a

world (i, 1+, <) depends solely on i and 1+, not <. In other words, MAX picks

the same action in (i, 1+, <
′) and in (i, 1+, <

′′) for all <′, <′′ ∈ " .

2. For all i ∈ (and < ∈ " , MAX picks a different action in (i, 0, <) and in

(i, 1, <).

These conditions ensure that MAX does not (illegally) pick their answer based on

their knowledge of < (condition 1), and MAX correctly encrypts their answer using

their hidden bit 1+ (condition 2). Furthermore, MAX’s pure strategies satisfying both

conditions are in bijection with the subcollections of (. In particular, each such strategy

corresponds to the subcollection

{i | MAX plays ✓ in all the worlds (i, 0, <) with < ∈ "} ⊆ (.

The key to ensure conditions 1 and 2 is to notice that whenever one of these

conditions is violated, MIN can gain information about something (e.g. the value of i)

that they cannot observe. Hence, by adding an action to let an agent of MIN to guess

which value is impossible (conditioned on MAX’s action) for something that they

cannot observe, MIN can punish MAX for violating these conditions. More details

follow.

12When MAX plays ×, it suffices for the agents of MIN to pick a common assignment of the variables so

that MAX always receives 0.

5.3. COMPLEXITY OF CGIIS 85

Ensuring condition 1

If condition 1 is violated, then there are i ∈ - , 1+ ∈ B, and <′, <′′ ∈ " , such that

MAX plays ✓ in the world (i, 1+, <
′) but × in the world (i, 1+, <

′′). Then necessarily,

<′ ≠ <′′. In a world (i, 1+, <) with an arbitrary < ∈ " , by observing MAX’s action,

an agent of MIN who knows i and 1+ but not < can deduce non-trivial information

about <. For example, if this agent observes ✓ from MAX, then they know for sure

that < ≠ <′′, while if they observe × they know < ≠ <′.13

Motivated by this observation, we introduce a new agent MIN called Controller 1,

who observes i and 1+, but not <. They have a special action called CheckM. After

playing this action, they need to pick an impossible <∗ ∈ " . The reward of this action

will be designed such that:

• if MAX’s strategy violates condition 1, then during the gameplay in at least one

world, Controller 1 has an incentive to play CheckM by picking an impossible

<∗, which yields a large negative expected reward for MAX;

• if MAX’s strategy does not violate condition 1, then there is no impossible <∗

in any world; MAX gets a large positive expected reward whenever Controller 1

plays CheckM, which means Controller 1 has no incentive to play it.

Ensuring condition 2

Now suppose that condition 1 is respected by MAX’s strategy, but condition 2 is

violated. Then there is i′ ∈ (such that MAX plays ✓ (or ×) in worlds (i′, 1+, <) for

all 1+ ∈ B and < ∈ " . Without loss of generality, suppose that MAX always plays ✓

in these worlds. In a world (i, 1+, <), observing MAX playing × allows an agent of

MIN who knows none of i, 1+, and <, to conclude that i ≠ i′.

Motivated by this observation, we introduce a new agent MIN called Controller 2,

who observes none of i, 1+, and <. They have a special action called CheckPhi. After

playing this action, they need to pick an impossible i∗ ∈ (. The reward of this action

will be designed such that:

• if MAX’s strategy violates condition 2 by, for example, always playing ✓ for a

certain i∗ regardless of what 1+ and < are, then in every world in which MAX

plays ×, Controller 2 has an incentive to play CheckPhi by picking i∗ as an

impossible value for MAX’s DNF, which yields a large negative expected reward

for MAX;

• if MAX’s strategy does not violate condition 2, then there is no impossible i∗

in any world; MAX gets a large positive expected reward whenever Controller 2

plays CheckPhi, which means Controller 2 has no incentive to play it.

There is still a tiny loophole: what happens if MAX decides to play ✓ all the time,

no matter what i, 1+, and < are? In this case, the branch of public tree where MAX

has played × is never reached, which means Controller 2 has no opportunity to play

CheckPhi to punish MAX. But what does playing ✓ all the time mean for the game?

MAX’s action is supposed to be their answer to i encrypted by 1+, hence when 1+ = 0

the action ✓ means MAX includes the DNF i into their intended subcollection (′,

13We recall that in the computation of maxmin values, it can be assumed that MIN has complete knowledge

of the strategy of MAX.

86 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

while when 1+ = 1 the action ✓ means MAX does not include i. Hence, if MIN plays

Size, MAX gets an expected reward of exactly 1/2.

However, recall that without loss of generality, we may assume that : ≤ (/3. Hence,

if (has a tautological disjunction of size at most : , then MAX can ensure an expected

reward of at least 1 − :/|(| ≥ 2/3, which means MAX has no incentive to cheat by

playing ✓ (and similarly for ×) in all worlds since MIN can retort by playing Size,

which yields a strictly smaller reward of 1/2. And this is the final missing piece for our

proof.

Proof of Proposition 5.3.7. Let ((, :) be an instance of Succinct Set Cover, where (

is a collection of 3-DNF formulae on a set - of = variables. Without loss of generality,

we assume that 1 ≤ : ≤ |(|/3. Construct the following instance of Pure Maxmin:

Players MAX with complete information; MIN with multi-agent incomplete informa-

tion consisting of 5 agents, referred to as MIN 1, 2, 3, and Controller 1, 2.

Aumann model The universe is* = (× B × " , where " = (- × B)3:

* = {(i, 1+, G1, 11, G2, 12, G3, 13) | i ∈ (, G1, G2, G3 ∈ -, 1+, 11, 12, 13 ∈ B}.

MAX observes everything; MIN 8 only observes G8 and 18 for 8 ∈ {1, 2, 3};
Controller 1 only observes i and 1+; Controller 2 observes nothing (i.e. has

the coarsest equivalence relation). The common prior over the universe is the

uniform one.

Public game tree Shown in Figure 5.5. MAX chooses 0+ ∈ B; then Controller 1 does

nothing (i.e. Pass), or plays CheckM and picks a <∗ ∈ "; in the former case,

Controller 2 does nothing (i.e. Pass), or plays Size, or plays CheckPhi and picks

a i∗ ∈ (; finally, if Controller 2 does nothing, then MIN 1, 2, and 3 participate

in an interrogation game with 3 agents, and they play sequentially 01, 02, and 03.

Payoffs for MAX We write ;
9

8
, where 8 ∈ {1, 2, 3} and 9 ∈ B, for the leaf ;8 in the

subtree � 9 . Let (i, 1+, <) = (i, 1+, G1, 11, G2, 12, G3, 13) denote the real world,

and let # = |* |. Then for all 9 ∈ B:

• At ;
9

1
, MAX receives +#2 if <∗ = <, and −# otherwise.

• At ;
9

2
, MAX receives +#2 if i∗ = i, and −# otherwise.

• At ;
9

3
, MAX receives 1 − (0+ ⊕ 1+).

14

• At each leaf of the interrogation game � 9 :

– If G8 = G 9 for some 8 ≠ 9 but 08 ⊕ 18 ≠ 0 9 ⊕ 1 9 ,
15 MAX receives +#;

– Otherwise, if MAX has chosen 1 ⊕ 1+ and a term in the 3-DNF i is

satisfied by the assignments chosen by the 3 agents of MIN to G1, G2,

and G3, MAX receives +# .

– Otherwise, MAX receives 0.

Maxmin The threshold of maxmin value is 1 − :/|(|.

14As in the previous reduction, an intended answer of 1 means MAX includes this DNF. Furthermore,

recall that (0+ ⊕ 1+) represents the intended answer of MAX.
15This means MIN 8 and 9 intend to choose a different assignment for this same variable.

5.3. COMPLEXITY OF CGIIS 87

A

�0

0

�1

1

C1
Pass

;1

CheckM, <∗ ∈ "

C2

�

Pass

;3

Size

;2

CheckPhi, i∗ ∈ S

Figure 5.5: The public tree for playing Succinct Set Cover. On the right, the figure

shows the subtree that repeats as �0 and �1 in the figure on the left. ;1, ;2, and ;3 are

leaves; � is an interrogation game with three agents of MIN.

The construction above is polynomial in the size of the Succinct Set Cover

instance ((, :). Indeed, the CGII has a size O(|(|=3). In addition, MAX has complete

information, and MIN has multi-agent incomplete information. We now show that there

exists a subcollection (′ ⊆ (of size at most : ≤ |(|/3 such that its disjunction is a

tautology if and only if this game has a maxmin value of at least 1 − :/|(| ≥ 2/3.

For the following arguments, it will be helpful to notice that in a world (i, 1+, <):

• MAX picks 0+ as a function of i, 1+, and <;

• Controller 1 picks <∗ for CheckM, or plays Pass, as a function of i, 1+, and 0+;

• Controller 2 picks i∗ for CheckPhi, or plays Pass, as a function of 0+.

=⇒ Suppose there is a subcollection (′ ⊆ (of size at most : ≤ |(|/3 and the

disjunction of which is a tautology. Let us consider MAX’s pure strategy corresponding

to (′, which means in (i, 1+, <) ∈ *, MAX plays 1 ⊕ 1+ if i ∈ (′, 1+ otherwise.

We first show that MIN’s dominant strategy is playing Pass by Controller 1 then

Size by Controller 2 in both �0 and �1. This strategy of MIN yields for MAX an

expected reward of 1 − |(′ |/|(|, which is at least 1 − :/|(| but strictly smaller than 1.

CheckM in �0 or �1 Let i ∈ (and 1+ ∈ B, and let 0+ be MAX’s action in all the

worlds (i, 1+, <) with < ∈ " , which is well-defined since 0+ depends solely on

i and 1+. If Controller 1 plays CheckM and picks <∗ ∈ " after observing i, 1+,

and 0+, then MAX receives −# in all worlds (i, 1+, <) with < ≠ <∗, but +#2 in

the world (i, 1+, <
∗). Hence, the expected payoff for MAX is at least 1, which

means in neither �0 nor �1 does Controller 1 have an incentive to play CheckM.

CheckPhi in �0 or �1 The argument is similar to the last one: for all i ∈ (, there is

at least one world in which MAX plays 0, and one in which MAX plays 1, so

there is never an impossible i∗ for Controller 2 to pick. If Controller 2 plays

CheckPhi, the expected payoff of MAX is at least 1. Thus, in neither �0 nor �1

does Controller 2 have an incentive to play CheckPhi.

�0 or �1 As shown in the previous subsection on interrogation game, in the interrogation

games �0 or �1, the agents of MIN has an incentive to implement a perfect

coordination since otherwise the discrepancy between the response of two agents

of MIN will be discovered in at least one world, yielding +# for MAX hence an

expected reward of at least 1.16 However, since MAX picks a subcollection (′

16Notice that there is no negative reward for MAX at any leaves of � .

88 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

such that the disjunction is tautological, in at least one world it will be discovered

that one term from the 3-DNFs of (′ is satisfied by the assignment of the agents

of MIN to their variables. This again means MAX gets +# in at least one world,

hence an expected reward of at least 1 for the whole game. Therefore, in neither

�0 nor �1 does Controller 2 have an incentive to choose Pass and let the game

continue into an interrogation game.

In conclusion, MIN’s dominant strategy is playing Pass by Controller 1 then Size

by Controller 2 in both �0 and �1. Therefore, MAX’s strategy guarantees an expected

payoff of at least 1 − |(′ |/|(|, which means the maxmin value is at least 1 − :/|(|.

⇐= Suppose there is no subcollection of (of size at most : ≤ |(|/3 such that its

disjunction is a tautology. We will show that no strategy of MAX can guarantee a payoff

of at least 1 − :/|(| ≥ 2/3.

Notice that by playing Pass then Size in both�0 and�1, MIN limits MAX’s reward

to be at most 1 in all worlds. We first consider the case in which MAX implements a

strategy that violates one of conditions 1 and 2.

Condition 1 If MAX’s strategy violates condition 1, then there are i ∈ (, 1+ ∈ B, and

<′, <′′ ∈ " , such that MAX plays 1 in world (i, 1+, <
′) and 0 in (i, 1+, <

′′).
Then in the worlds (i, 1+, <) with < ∈ " , Controller 1 can play CheckM with

<∗ = <′′ if they observe that MAX plays 1 (i.e. in �1), and <∗ = <′ if MAX

plays 0 (i.e. in �0). In the other worlds, Controller 1 plays Pass and Controller 2

plays Size in both �0 and �1. Then in no world MAX gets a reward of +#2,

but they get −# for all worlds of the form (i, 1+, <) and at most 1 in the other

worlds. Hence, the expected world for MAX is at most 0 < 1 − :/|(|.

Condition 2 Now suppose MAX’s strategy respects condition 1 but not condition 2,

then there is i′ ∈ (such that MAX plays 1 (or 0) in world (i′, 1+, <) for all

1+ ∈ B and < ∈ " (the latter being true by condition 1). Without loss of

generality, suppose that MAX plays 1 in all these worlds.

• If MAX actually plays 1 in all the worlds of the universe, then Controller 1

plays Pass and Controller 2 plays Size in both �0 and �1 so that MAX’s

expected payoff is restricted to be 1/2 < 1− :/|(|. Indeed, with probability

1/2, 1+ = 0 is drawn, yielding 0+ ⊕ 1+ = 1 ⊕ 1+ = 1, hence a payoff of 0

when Controller 2 plays Size.

• Otherwise, MAX plays 0 in at least one world in which the DNF is not i′.

Then Controller 1 plays Pass in both �0 and �1, Controller 2 plays Size in

�1, and CheckPhi with i∗ = i′ in �0. Then in the worlds in which MAX

plays 1, they get at most 1 as reward; in all worlds (there is at least one) in

which MAX plays 0, they always get −# as reward since the DNF in these

worlds is never i′. Hence, the expected reward for MAX is again at most

0 < 1 − :/|(|.

Suppose now that MAX plays a strategy that respects both conditions 1 and 2. We

have already argued that such strategies are in bijection with the subcollections of (.

The rest of the argument is similar to the one in the previous reduction from Succinct

Set Cover:

• If MAX chooses a subcollection (′ such that the disjunction is a tautology, then

the size of this subcollection is at least : + 1. Then Controller 1 plays Pass and

5.4. SEARCH ALGORITHM FOR VECTOR GAMES 89

Controller 2 plays Size in both �0 and �1 to give MAX an expected payoff of

1 − |(′ |/|(| < 1 − :/|(|.

• Otherwise, the disjunction of (′ is not a tautology, then Controller 1 and 2 play

Pass in both �0 and �1, and MIN 1, 2, and 3 implement a perfect coordination

of an assignment that does not satisfy this disjunction in both of the interrogation

games �1 and �2. As a result, MAX has an expected payoff of 0 < 1 − :/|(|.

In conclusion, no strategy of MAX can assure a payoff of at least 1 − :/|(|, which

means the maxmin value is strictly less than 1 − :/|(|. □

Remark. Notice that in the CGII constructed above, MIN has joint complete informa-

tion (i.e. if the agents of MIN could pool their information/knowledge, then they would

have complete information). Indeed, Controller 1 knows i and 1+, while MIN 8 knows

G8 and 18 for all 8. Therefore, even if we restrict our attention to CGIIs in which MIN has

multi-agent incomplete information but joint complete information, ΣP
2
-hardness still

holds. This shows the hardness comes not from MIN’s inability to observe something

(whatever MAX observes is observed by at least one agent of MIN), but from the fact

that the agents of MIN must make decisions in a decentralised17 way under different

information/knowledge.

Remark. Note that the CGII constructed in this proof involves 4 different payoff values

(0, −# , +# , and +#2) and 5 agents of MIN. We leave to future work the search for a

reduction to Boolean CGII with only 2 agents of MIN.

5.3.5 Final remarks

Notice that Table 5.1 mirrors perfectly the part concerning EFGs of chance in Table 4.1

(page 36). This backs up our claim that restricting games to have only public actions

and one single chance node at the beginning does not reduce the complexity of finding

the pure maxmin value, which also means CGII is equally expressive as EFG, up to a

polynomial factor.

The reason we did not prove results in Table 4.1 with the reductions we used in this

section is a pedagogical one: due to the possibility that players’ actions are private,

reductions for hardness results in Table 4.1 are much more straightforward; they also

give a first flavour of how games with few turns (typically one by each agent) are capable

of simulating NP-hard and ΣP
2
-hard problems, thereby (hopefully) rendering the more

sophisticated reductions in this section easier to understand.

5.4 Search algorithm for vector games

We now turn our attention to solving a CGII, or more concretely, to designing algorithms

for computing the pure maxmin value of a CGII.

The case in which both teams have complete information is trivial, since such a

CGII is a game of no chance and with perfect information. From Table 5.1, we know

that all other cases are difficult to solve. We thus begin with the simplest non-trivial

case, where MAX has single-agent incomplete information, while MIN has complete

information. We also say that such a CGII is with one-sided incomplete information.

17By “decentralised”, we mean that there is no central agent that collects information from each agent and

informs them of what action to take.

90 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

5.4.1 The best-defence model

One-sided incomplete information is actually a case of great importance to consider

due to the possibility of solving games with two-sided incomplete information by

considering its approximation with one-sided incomplete information via the best-

defence model, first introduced and formalised by Frank and Basin (1998).

The essential idea is to suppose that MIN has complete information.18 More

concretely, given a CGII �, consider a CGII �′ with the same public tree, reward

function, and universe, but MIN’s equivalence relation over the universe is now the

finest one.

By definition, MIN has no fewer equivalence classes in �′ than in �, hence they

have no fewer pure strategies in �′ than in �. This, in return, implies that the pure

maxmin value of �′ is a lower bound for the one of �. In Bridge, for example, solving

�′ usually results in strategies that are quite close to optimal strategies in �.

What is particularly interesting about �′ is that MAX’s optimal strategies in it

consist of optimal strategies in each equivalence class of MAX. Let us show this

property by more details. By definition, the pure maxmin of �′ reads

E′+ ≔ max
B+∈Σ

P
+

min
B−∈ΣP

−

U+ (B+, B−) = max
B+∈Σ

P
+

min
B−∈ΣP

−

∑
l∈*

d(l)D+
(
(B+, B−) (l), l

)
.

Since MIN has complete information in �′, the min over MIN’s strategies can be

switched with the sum over l. Let us abuse the notation and write R+ the partition of

the universe * induced by this equivalence relation. Let us also denote by ΣP
8,)

, where

8 ∈ {+,−} and) stands for the public tree of �′, the set of all mappings from +8 to +

that maps each node to one of its child19, and denote by B8,) such a mapping. Notice

that ΣP
8,)

is independent of the actual world. Hence, we can rewrite the pure maxmin

value as

E′+ =
∑

*′∈R+

max
B+,) ∈Σ

P
+,)

∑
l∈*′

d(l) min
B−,) ∈Σ

P
−,)

D+
(
(B+,) , B−,)), l

)
,

where we denote by the tuple (B+,) , B−,)) the unique node reached under this profile.

For an equivalence class *′ ∈ R+, let us consider �′*
′
, the restriction of �′ to

*′, i.e. a CGII with the same public tree and reward function as �′ but with *′ as

its universe. In �′*
′
, MAX has the coarsest equivalence relation (hence MAX has

completely incomplete information) while MIN has the finest one (hence MIN has

complete information). Then we can relate the pure maxmin value of these games by

E′+ =
∑

*′∈R+

d(*′)E*
′

+ ,

where E*
′

+ is the pure maxmin value of �′*
′
, and d(*′) =

∑
l∈*′ d(l).

As a conclusion, to compute the maxmin value of�′, or equivalently to find optimal

strategies in �′, it is sufficient to find optimal strategies in �′*
′

for each equivalence

class *′ of MAX. To summarise, the best-defence model brings us from � to �′, and

finally to a collection of independent games {�′*
′
}*′∈R+.

18This idea is akin to the one from Lemma 4.2.2 (page 35). Recall that for computing the maxmin value

of EFGs of no chance, it can be assumed that MIN has perfect information. Of course, this result does not

hold when there is at least one chance node, since the complexity of Pure Maxmin now depends on MIN’s

degree of imperfect information (cf. Table 5.1).
19Such a mapping can be considered as a pure strategy played on the public tree. A pure strategy of 8 in a

CGII can then be regarded as mapping each equivalence class of 8 to such a mapping.

5.4. SEARCH ALGORITHM FOR VECTOR GAMES 91

In typical games with incomplete information, such as card games, we are mostly

interested in solving the interim stage, not the ex ante stage (cf. the end of Subsec-

tion 5.2.1). From the perspective of MAX, the interim stage under the best-defence

model is just the game �′*
′

where *′ is the equivalence class of MAX that contains

the real world drawn by Nature.

The advantage of the best-defence model is clear: the Aumann model of �′*
′

is,

in general, much simpler than that of �, and *′ is also much smaller than *, which

means in general solving�′*
′
for all*′ is much more manageable than solving� itself.

This is especially true for the reason that MIN has complete information in �′*
′
while

they may only have single-agent incomplete information or multi-agent incomplete

information in � ; by the complexity results in Table 5.1, we see that �′*
′
can be much

easier to solve than �.

In the following, we first study how to solve a CGII under the best-defence model,

i.e. solving �′*
′

for a given *′ and �. Near the end of this dissertation, we will see

how to go beyond the assumption of the best-defence model, while exploiting all we

know about solving a CGII under this model.

5.4.2 Vector games and vectorisation

From now on, we focus on CGII with one-sided incomplete information, or equivalently

CGII under the best-defence model. Since we are interested in computing the maxmin

value for MAX, the utility for the other players do not matter. We may therefore, without

loss of generality, assume that all CGII are zero-sum. Then the reward for MAX at each

leaf can be represented by a real vector of length |* | where each component signifies

MAX’s reward for reaching this leaf in the corresponding world. Hence, we also refer

to CGII under the best-defence model as vector games.

Concretely, given a finite tree) , recall that we write A for its root, L()) for the set

of its leaves, N()) for the set of its nodes, and C(=) for the set of children of a node

= ∈ N()). Then a vector game is formally defined as.

Definition 5.4.1 (Vector game). A vector game, or a CGII under the best-defence

model, or a CGII with one-sided incomplete information, is a tuple � ≔ ⟨), P, C, ®D, ®d⟩,
where) is a finite tree, P : N()) \L()) → {+,−} determines whose turn it is at a node,

C ∈ N is the number of MIN’s types, ®D : L()) → RC gives the utility for MAX depending

on MIN’s type, and ®d is a commonly known distribution over MIN’s types.

Since there is a one-to-one correspondence between MIN’s types and the worlds in

the universe, we use the notion “type” and “world” interchangeably. In addition, we

refer to the vectors ®D(;) for all leaves ; ∈ L()) as reward vectors.

Example. A vector game with 5 types of MIN is given in Figure 5.6, where a square

(respectively a circle) denotes a node of MAX (respectively of MIN). We assume a

uniform prior, i.e. each MIN’s type is drawn with probability 1/5. If MIN always

plays a (at A) and MAX plays l, then the leftmost leaf is reached and MAX’s payoff is

(1, 1, 1, 0, 0), which means MAX’s gain is 1 if MIN is of one of the first three types, and

0 otherwise.

Vectorisation

A point we have not yet addressed is that in many (not necessarily combinatorial) games

with one-sided incomplete information, MIN’s available actions may depend on their

92 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

A

a b

A

(
1
1
1
0
0

)
l

(
0
0
0
1
1

)
r

B

(
1
1
0
0
0

)
L

(
0
0
1
1
1

)
R

Figure 5.6: A vector game with a universe of 5 worlds.

type. For example, in a card game, MIN can only play the card in their hand. We now

illustrate how to model such a game using a vector game via the idea of vectorisation.

The core idea is to represent nodes with the same history (or, equivalently, observations)

for MAX as one single node.

Nature

A
B

C

A

l

B
l r

C

r

D

0

L

1

R
E

1

L

0

R
F

0

L

1

R
G

1

L

0

R

Figure 5.7: A game with one-sided incomplete information.

Take the game in Figure 5.7 as an example. Nature chooses a type among A, B and

C for MIN, the available actions of whom (l, r, or both) depend on their type. On the

other hand, MAX has a single type with possible actions L and R. As MAX cannot

observe MIN’s type, they cannot distinguish node � from node � . Therefore, these

two nodes form an information set of MAX, and similarly for nodes � and �.

When we compute the maxmin value of the game, we actually view it from the

perspective of MAX. In this case, any two nodes with the same history for MAX are

indistinguishable. Hence, we can represent the information set {�, �} with one single

node, and similarly for the information set {�, �}. In addition, there is also no need

to represent separately nodes �, � and � since they also have the same observations

for MAX. Aggregating all nodes with the same history for MAX in this way yields the

CGII (and vector game) in Figure 5.8.

By construction, nodes in the vector game thus obtained are in one-to-one corre-

spondence with observations for MAX in the original game with one-sided incomplete

information.

Notice that at the leftmost leaf, the payoff vector is (0, 1, ∗). It means that the payoff

of the outcome of this history is 0 if MIN is of type A, 1 if of type B. If MIN is of type

C, this leaf node cannot be reached: a MIN of type C does not have the action ! and

therefore the history (l, L) that leads to this leaf node is impossible. This is why the

third row of the payoff vector of this leaf node is denoted by an asterisk ∗.

5.4. SEARCH ALGORITHM FOR VECTOR GAMES 93

{�, �, �}

l r

{�, �}

(
0
1
∗

)L (
1
0
∗

)R

{�,�}

(
∗
0
1

)L (
∗
1
0

)R

Figure 5.8: The corresponding CGII and vector game.

If we are only interested in computing the maxmin value of MAX, then all asterisks

in the payoff vectors can be simply replaced by a +∞, which yields a vector game with

the same maxmin value of the original game, as justified by Frank and Basin (2001) and

Ginsberg (2001). Indeed, MIN has perfect information, they never have an incentive to

choose action that can lead to an ∗. In other words, all strategies in this vector game

that contain an illegal action in the original game are weakly dominated strategies.

Following the same idea, one can also convert any two-team game with incomplete-

information and public actions into a CGII with +∞ and −∞ featuring in some compo-

nents of the reward functions with the same maxmin value.

5.4.3 Generic minimax algorithms

The maxmin value of games with perfect information is typically computed by the

minimax algorithm, a generic version of which is shown in Algorithm 3 (the maxmin

strategies can be computed by bookkeeping).

Algorithm 3: Generic minimax algorithm

1 def MiniMax(node =, game ⟨), P, C, ®D, ®d⟩):
2 if = is a terminal node:

3 return eval(=)
4 elif P(=) = +:
5 return

∨
=′∈C(=) MiniMax(=

′)

6 else:

7 return
∧

=′∈C(=) MiniMax(=
′)

This algorithm has four parameters, which we use to capture different algorithms in

the following.

• + is a set of objects called situational values;

• eval is an evaluation function which maps each leaf node ; ∈ L()) to a value

eval(;) ∈ + ;

• ∨,∧ : + ×+ → + are two associative binary operators, referred to as MAX’s and

MIN’s operator or combination function, respectively.

With eval as boundary conditions, this algorithm recursively defines a situational value

val(=) for every node =. For an instantiation of this algorithm to compute the maxmin

values, one should choose the parameters as a function of the class of games under

94 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

consideration, in such a way that there is a polynomial-time computable mapping from

the situational value of the root val(A) to the maxmin value of the game.

We write MiniMax(+, eval,∨,∧) for its instantiation with the parameters + , eval,

∨, ∧, and denote by val(=) the value which it associates to each node. For ex-

ample, for games with perfect information (i.e. when C = 1), it is well-known that

MiniMax(R, ®D,max,min) satisfies val(A) = E+, where A is the root of the tree.

This algorithm has several advantages: returned values for internal nodes are readily

interpretable; the algorithm is efficient on memory since the recursion depth is the depth

of the game tree, which in general is exponentially smaller than the tree; the search can

be combined with other techniques, such as heuristic functions and UV pruning (which

is possible whenever (+,∨,∧) forms a lattice (Li et al., 2022)), move ordering, Monte

Carlo techniques such as MCTS, etc.

In the following, we will show some choices of the parameters that give rise to a

correct algorithm for computing the pure maxmin value of a vector game.

5.4.4 Strategy fusion and non-locality

Throughout this part, let � = ⟨), P, C, ®D, ®d⟩ be an arbitrary vector game. We write its

universe as * = {l1, . . . , lC }. Unless explicitly stated otherwise, in all our examples

®d is the uniform distribution over*.

We also assume that � is a Boolean game. This assumption is well-motivated by

the following reasons.

• Boolean games are simpler; hence they simplify the discussion.

• Boolean values have a clear interpretation: 1 is a win for MAX, 0 is a loss. The

situational values we will assign to nodes are easily interpretable too.

• Many tabletop games and video games, which can be modelled by games with

incomplete information, have Boolean outcomes. Even when this is not the case,

one can pick a threshold of score to transform a non-Boolean game into a Boolean

one without losing the most important characteristics of a game.

• Last and not the least, we have seen from previous chapters on complexity results

that Boolean games are as difficult and general as non-Boolean games.20

Under this setting, the reward vectors of the leaves (i.e. ®D(=) for = ∈ L())) are

binary vectors of length C, which can be regarded as subsets of the universe*. Viewing

vectors as subsets allows more intuition of many subjects that will be evoked in the

following. Hence, we identify elements inBC with elements inP(*)21, and component-

wise maximum (respectively, minimum) of binary vectors with union (respectively,

intersection) of subsets of *. In order not to abuse the notation, we write ∥®E∥ ∈ P(*)
for the subset of* corresponding to the binary vector ®E ∈ BC .

Before giving a correct minimax algorithm for computing the pure maxmin value

of a vector game �, we first show a few naı̈ve and failed attempts in order to illustrate

the particular difficulty caused by incomplete information.

20And one can replace ∗ by 1 in the CGII obtained by vectorisation; this allows us to get a Boolean CGII

from a Boolean game.
21P(*) is the power set of *, i.e. the set of all subsets of *.

5.4. SEARCH ALGORITHM FOR VECTOR GAMES 95

Strategy fusion

A first naı̈ve attempt is to minimally modify the basic minimax algorithm for perfect

information by assigning a binary vector of length C as situational value to each node and

use component-wise maximum and minimum as combination functions. Concretely,

we take + = P(*), eval(;) = ∥ ®D(;)∥ for all leaves ; ∈ L()), ∨ = ∪, ∧ = ∩.

A

(
1
1
0
0
0

)
l

(
0
0
0
1
1

)
r

Figure 5.9: A simple vector game with a universe of 5 worlds.

Unfortunately, this approach will not work. A simple counterexample is provided

by the game in Figure 5.9. In this game, MAX has two different actions l and r, while

MIN does not act at all. The algorithm mentioned above will assign to the root node

A a value (1, 1, 0, 1, 1), which is just the component-wise maximum of the two payoff

vectors (1, 1, 0, 0, 0) and (0, 0, 0, 1, 1). However, this result is simply wrong since it

suggests that the pure maxmin value is 4/5 while in reality it is only 2/5 since both of

MAX’s strategies allow them to win in only 2 worlds.

This discrepancy is due to the fact that this naı̈ve version of the minimax algorithm

computes the value of a node owned by MAX as if they had complete information.

Indeed, the component-wise maximum as the operator for MAX supposes that MAX

always knows in which world they are and that they will choose the best action in this

world. In our example above, the algorithm thinks that MAX can win in all worlds

except world 3, which is the case if MAX can choose the correct action according to

MIN’s actual type. In reality, due to lack of information, MAX can only choose between

l and r in a way that is independent of MIN’s actual type.

This problem is called strategy fusion by Frank and Basin (1998). In summary, the

algorithm does not take into account the incomplete information of a game; therefore, it

is not what we desire in order to compute the maxmin value of a vector game. However,

this algorithm, which runs only in linear time, is still useful since it computes the

maxmin value of an omniscient MAX. In other words, the result yields an upper bound

of the maxmin value. In addition, the vector that is the value of the root node also

contains valuable information, such as whether it is possible to force a win with perfect

information in a given world. For example, in the game above, it is not possible for

MAX to force a win in world 3, even with complete information. Such information

can provide useful heuristics and facilitate pruning in a tree search to find the real

maxmin value of a game with incomplete information. We will return to this later in

Subsection 6.5.2 (page 127).

Non-locality

In the last algorithm, taking the intersection as MIN’s operator appears to be justifiable,

since MIN has complete information and can therefore pick actions to force a loss

for MAX according to the real world. As for MAX, now we have observed that

taking set union as their operator does not account for MAX’s single-agent incomplete

96 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

information. If we interpret the situational value of a node as the set of worlds in which

MAX can force a win by picking one strategy starting from this node, then it is natural

to try to change MAX’s operator to pick a subset with the maximum cardinality.

However, even with this modification, the new minimax algorithm still fails. The

vector game in Figure 5.6, taken from the article by Frank and Basin (1998), serves as a

counterexample. Our algorithm will output 1/5 as the pure maxmin value of this game,

since it assumes that MAX greedily chooses l at node � and R at node �. Indeed, at

� the action l has a support22 of size 3 versus 2, the size of the support of the action r.

Hence, the algorithm assumes that MAX chooses l at � and therefore assigns the value

(1, 1, 1, 0, 0) to node �. For a similar reason, it assigns the value (0, 0, 1, 1, 1) to node

�. Hence, at the root A , the value will be (0, 0, 1, 0, 0), which is the intersection of the

values of node � and node �.

Nevertheless, 1/5 is not the correct maxmin value. In this game, MAX has in total

4 different strategies: (l, L), (l,R), (r, L), and (r,R). With a brute force computation,

one can easily verify that the maxmin value of the game is, in fact, 2/5, achieved by two

maxmin strategies (l, L) (with support {l1, l2}) and (r,R) (with support {l4, l5}).

The error of this less naı̈ve minimax algorithm is quite subtle. In a game with perfect

information, the evaluation of a node = is local, in the sense that the optimal strategies

in the subtree rooted at = (also called the subgame at =) are independent of other parts of

the game tree. However, this no longer holds in the presence of incomplete information.

This phenomenon is aptly named non-locality by Frank and Basin (1998), who also

give a lengthy discussion of this phenomenon.

Let us return to the game in Figure 5.6. At node � we have action l with payoff

(1, 1, 1, 0, 0), which is locally better (in terms of cardinality of support) than action r

with payoff (0, 0, 0, 1, 1). If the real game began at node �, then ; would indeed be

optimal for MAX and achieve the maxmin value of 3/5. However, it is not true that

at the root of the game, it is better to prescribe action l at node � than action r since

the real contribution of an action at node � to the support of a strategy at the root of

the whole game tree also depends on actions chosen at other nodes than node �. For

example, the fact that action ; has support {l1, l2, l3} does not necessary mean that

at the root these worlds are also in the support of an optimal strategy. Indeed, if MAX

plays l at node � and R at node �, then MAX has no guarantee to win in worlds l1

and l2 since in these worlds, MIN can very well choose action b. The same is true for

worlds l4 and l5, which are locally covered by action R at node �. This is the reason

the strategy (l,R) only has support {l3} at the root.

In summary, in a game with incomplete information, an optimal strategy at a node G

will not necessarily be part of any optimal strategy at an ancestor H of G due to non-local

interactions between strategies at G and strategies at other descendants of H.

As a final remark, notice that strategy fusion is a phenomenon that occurs at MAX’s

nodes. On the contrary, non-locality occurs at MIN’s nodes. These two phenomena

illustrate different facets of MAX’s incomplete information: strategy fusion is due to

MAX’s ignorance of the real world, while non-locality is due to their ignorance of

MIN’s strategies in different worlds.

5.4.5 Ginsberg’s algorithm

In order to find the correct maxmin value in the example in Figure 5.6, it seems necessary

to keep both l and r as options. This means that + = P(*) actually does not contain

22A support of a strategy is the set of worlds in which this strategy is winning.

5.4. SEARCH ALGORITHM FOR VECTOR GAMES 97

enough information to compute the pure maxmin value at the root.

Inspired by this counterexample, one may propose+ = P(P(*)). For each node =,

we would like that its situational value val(=), a set of subsets of* (also called a family

of *), contains information about all possible strategies of MAX in the subtree rooted

at =.

Recall that each strategy of MAX in the subtree rooted at = maps each of MAX’s

decision nodes in this subtree to an available action at this node. In the following, we

abuse the language and refer to such a strategy as a local strategy at =. Each strategy at

= also gives rise to a vector which is its support: the set of worlds in which this strategy

is winning given that the game starts at =, no matter how MIN reacts. Hence, the set of

supports of all MAX’s local strategies at = is a family of *. In the following, we will

show how to compute this value for all nodes.

For the evaluation function, it is natural to choose eval(;) = {∥ ®D(;)∥} for all leaves

;, since MAX has only one local strategy at ; (i.e. the empty one), which has ∥ ®D(;)∥ as

support.

For ∨, we are motivated to take set union ∪: the set of MAX’s local strategies at =

is in bijection with the union of the set of MAX’s local strategies at the children of =.

As for ∧, we take the meet operator from the family algebra23:

∀ 5 , 6 ∈ P(P(*)), 5 ⊓ 6 = {U ∩ V | U ∈ 5 ∧ V ∈ 6}.

To justify this choice, imagine that a node I of MIN has two children G and H. Notice

that the set of MAX’s local strategies at I is in bijection with the product of the set

of MAX’s local strategies at G and H, since MAX observes MIN’s action at I and can

therefore choose their local strategy at G and H independently. Given a MAX’s local

strategy at G represented by its support 5 , and one at H represented by 6, what will the

support be for MAX’s local strategy at I, denoted by (5 , 6), which consists in playing 5

at G and 6 at H? The answer is 5 ∩ 6, since MIN can choose between G and H according

to the actual world so that a world is winning under MAX’s local strategy (5 , 6) at I if

and only if it is also winning under both 5 at G and 6 at H.

Hence, our new minimax algorithm reads MiniMax(P(P(*)), eval,∪,⊓), which

was first proposed by Ginsberg (2001). Consider again the game in Figure 5.6. Using

this algorithm, the value for each non-leaf vertex will be:

val(�) =
{
{l1, l2, l3}, {l4, l5}

}
,

val(�) =
{
{l3, l4, l5}, {l1, l2}

}
,

val(A) =
{
{l3}, {l1, l2}, {l4, l5}, ∅

}
.

One can see that at the root, there are two strategies with support of size 2, hence the

maxmin value is 2/5, as we can verify by brute force.

The operators can be easily generalised to tackle non-Boolean vector games. Let

us write P<∞ (R
C) for the set of all finite sets of vectors in RC . For 5 , 6 ∈ P<∞ (R

C), we

define 5 ⊓ 6 by

5 ⊓ 6 ≔
{(

min(E8 , E
′
8)
)
1≤8≤C | ®E ∈ 5 , ®E

′ ∈ 6
}
.

Proposition 5.4.2. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A . For ; ∈ L()),
let eval(;) ≔ {®D(;)} ∈ P<∞ (R

C). Then the algorithm MiniMax(P<∞ (R
C), eval,∪,⊓)

satisfies

E+ ≔ max
B+∈Σ

P
+

min
B−∈ΣP

−

D(B+, B−) = max
®E∈val(A)

®@ · ®E.

23All the operators from the family algebra are presented in Appendix A.3.1.

98 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

In other words, MiniMax(P<∞ (R
C), eval,∪,⊓) can be used to compute the pure

maxmin value of a vector game. We defer the proof of this result, which is not found in

the literature, to a later chapter (cf. Proposition 7.3.6, page 150) where we introduce a

generalised version of this algorithm. For the moment, we content ourselves with only

an intuition of how it works and why it is correct.

5.4.6 Analysis of Ginsberg’s algorithm

We should emphasise that Ginsberg’s algorithm MiniMax(P(P(*)), eval,∪,⊓), where

eval(;) ≔ {∥ ®D(;)∥}, is not a polynomial-time algorithm. Recall that the size of the

input is defined to be |* | · |) | = C |) |, where |) | is the number of vertices in the public

tree) . It is true that this algorithm performs a depth-first search on the game tree; hence

it traverses each node exactly once, which means the running time of the algorithm is

linear in |) | when C is fixed. On the other hand, the running time of the operators ∪ and

⊓ are not polynomial in C.

Let us have a closer look at the computation of these operators from the family

algebra in Ginsberg’s algorithm. By the definition of eval, the situational value of a leaf

val(;) is a singleton, i.e. a family containing only one subset. However, for two families

5 and 6, 5 ∪ 6 is a family that has a size of O(| 5 | + |6 |), and 5 ⊓ 6 is a family that

has a size of O(| 5 | · |6 |). This means in Ginsberg’s algorithm, the cardinality of the

situational values can grow exponentially when the algorithm recurses from the leaves

towards the root. In the worst case, a situational value can have a cardinality of O(2C),
hence computing the union ∪ or the meet ⊓ of two such values can take a time of O(2C)
(multiplied by the time needed to find the intersection of two sets of size C).

Hence, the running time of Ginsberg’s algorithm is O(2C |) |), hence exponential in

the input. This is hardly surprising, since we already know that finding the pure maxmin

value of a vector game is NP-hard by Proposition 5.3.3. Another way to understand

the exponential dependency on C is to recall that each subset in the situational value of

a node represents one (or several) local strategies at this node with this subset as its

support. Since MAX has exponentially more local strategies at nodes close to the root,

it is natural that the situational values of these nodes have an exponential size.

What is encouraging is that this analysis also shows that Ginsberg’s algorithm is

fixed-parameter tractable on the size of the universe C, which means the algorithm

is actually efficient when C is small (i.e. MAX does not have too much incomplete

information). However, in typical card games, C is actually an astronomical number.

For example, during the card play of Bridge, C is of the order of one million. In this case,

it is hopeless to apply Ginsberg’s algorithm directly. For this algorithm to be remotely

practical, it is clearly indispensable to implement it with algorithmic optimisations,

which will be the subject of the next chapter.

5.5 Conclusion

In this chapter, we have first proposed a new formalism called combinatorial game with

incomplete information. This formalism models games with incomplete information

with public actions, and no chance node except for the initial drawing over the universe.

We have thoroughly investigated the computational complexity of finding a lower

bound on the pure maxmin in two-team CGIIs, for each degree of incomplete informa-

tion (CI, SA-II, MA-II) for MAX and MIN. This allows us to have a complete landscape

of this problem (cf. Table 5.1), which mirrors perfectly the complexity of EFGs of

5.5. CONCLUSION 99

chance (cf. Table 4.1, page 36). This shows that our new formalism CGII is as expres-

sive as EFG of chance, but has the advantage of being conceptually simpler and more

minimal, and of capturing better the essence of knowledge (or incomplete information)

of players in a game.

We have then proceeded to investigate CGIIs with one-sided incomplete information

(i.e. MAX has SA-II while MIN has CI). The notions of strategy fusion and non-locality

have been explored to understand intuitively why such CGIIs are hard to solve. Then

we have shown and analysed a correct depth-first search algorithm from the literature

to compute the exact maxmin value of such CGIIs.

Prospectives

There are numerous open problems about the new formalism CGII that remain to be

explored. We just list a few that are on our mind:

• Can we find a simpler proof for Proposition 5.3.7 or strengthen its result to hold

even under the restrictions to 2 agents of MIN and Boolean CGIIs?

• What is the right formalism for compactly represented CGIIs? And what would

be the complexity of solving them?

• What is the complexity landscape of Pure OM-Maxmin for CGIIs? Some proofs

(e.g. the one of Proposition 4.4.8, page 58) of hardness for Pure OM-Maxmin

for EFGs involve hidden or concurrent actions; hence they do not carry over to

CGIIs.

• What is the complexity landscape of Pure ≤-Maxmin and of Pure =-Maxmin?

Notice that the technique shown in Figure 4.2 (page 61) no longer works, since

we cannot construct a new CGII that has two CGIIs as subtrees: chance nodes

are not allowed in the public tree of a CGII.

• Can the construction of interrogation games in Subsection 5.3.3 be extended to

allow questions with multi-bit answers?

• From Table 5.1, we know that CGIIs in which MAX has SA-II and MIN has

CI are as hard as CGIIs in which MAX has CI and MIN has SA-II, or even as

CGIIs in which both MAX and MIN have SA-II. For the first subclass, we have

a depth-first exact algorithm (i.e. Ginsberg’s algorithm). Can we design similar

exact algorithms for the other two subclasses?

100 CHAPTER 5. COMBINATORIAL GAME WITH INCOMPLETE INFORMATION

Chapter 6

Optimisations for Ginsberg’s

algorithm

6.1 Introduction

In this chapter, we will study various optimisations that are applicable to Ginsberg’s al-

gorithm (MiniMax(P(P(*)), eval,∪,⊓) with eval(;) ≔ {∥ ®D(;)∥}), which we roughly

divide into two categories: strategy pruning and game tree pruning.

Strategy pruning Since not every local strategy (e.g. dominated strategy) can be part

of a maxmin strategy at the root, it is not necessary to keep all strategies under

consideration. This means we can discard certain subsets from situational values

to make these families have smaller size and render the operators ∪ and ⊓ faster

to compute.

Game tree pruning Ideas such as alpha-beta pruning can be applied to Ginsberg’s

algorithm. In addition, there are many other possible prunings specific to

games with incomplete information. These prunings allow the algorithm to

avoid traversing the whole tree, and potentially reduce the size of the families

generated by the algorithm due to the reduction of branching factor.

Of course, there are other optimisations. For example, by abstracting unimportant

details of the opponent’s hidden hands, we can reduce the number of MIN’s types from

millions to hundreds in a typical Bridge game. However, this particular optimisation is

both approximative1 and game-specific.

In this chapter, we are mostly interested in exact optimisations, i.e. the ones that

guarantee that the value computed by the algorithm equipped with these optimisations

is still the exact maxmin value. Although many optimisations studied in this chapter are

inspired by human’s gameplay techniques in Bridge, they are actually game-agnostic

and can be applied directly to any other game modelled by vector games or CGII; some

even apply to algorithms besides Ginsberg’s algorithm. Hence, their presentation here

will be as generic as possible to emphasise their wide applicability.

1Since there is no universal rule in Bridge to determine whether a small card is important or not, there is

always a risk of treating two inequivalent hands of an opponent as the same.

101

102 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Due to the lack of time, we defer the study of other types of optimisations (e.g. Monte

Carlo tree search) to future work; also, hopefully our presentation of the formalism of

CGII piques other researchers and engineers’ interest in finding more optimisations.

Organisation of the chapter

This chapter is organised as follows.

• In Section 6.2, we study the notion of choice functions, which are functions that

return a subset of their input. We then formalise the concept of reduction function

as a particular type of choice function.

• In Section 6.3, we study the optimal generic strategy pruning for Ginsberg’s

algorithm, which corresponds to elimination of dominated strategies. Some

other strategy prunings that are greedy but unsound, or only sound under certain

circumstances, are also presented.

• In Section 6.4, we look at a very general type of tree pruning method called

alpha-beta pruning. We complete the literature on this classic method by giving

a characterisation of the values returned by alpha-beta search under partial order,

with heuristic functions to estimate the value of a node. We also propose a

caching scheme for this algorithm. Experimental results are then presented.

• In Section 6.5, we extend the idea of alpha-beta search to allow for an additional

search window that we call gamma. After establishing the correctness of this new

algorithm, we show two instances of this algorithm, which are game tree pruning

methods inspired by human Bridge gameplay.

6.2 Choice functions as reduction functions

A choice function on a set (is a function that takes a non-empty subset of (and returns

a non-empty subset of this subset.

Definition 6.2.1 (Choice function). Let (be an arbitrary finite set. A choice function

on (is a function of the form 2 : P(() → P(() such that for all (′ ⊆ (, 2((′) ⊆ (′

and 2((′) ≠ ∅ if (′ ≠ ∅.

We make a detour to study choice functions first, since many strategy prunings in

Ginsberg’s algorithm (e.g. elimination of dominated strategies; see Subsection 6.3.1.)

are reduction functions, which are choice functions that satisfy certain properties.

In this section, we first study a few properties that a choice function can have. Then,

we define reduction functions as special choice functions and provide simple sufficient

conditions for a choice function to be a reduction function. Finally, we study the notion

of partial reduction.

6.2.1 Properties of a choice function

The definitions from this section are inspired by the work by Moulin (1985), which

readers who are willing to learn more about axiomatic approaches to choice functions

should readily consult.

6.2. CHOICE FUNCTIONS AS REDUCTION FUNCTIONS 103

In the following, we focus on choice functions on (= P($), where$ is an arbitrary

finite set. A choice function 2 on (is then a function defined on all families of $, the

set of which we denote by � = P(P($)).

Definition 6.2.2 (Compatibility with family algebra). Let 2 be a choice function on (.

Then 2 is said to be compatible with family algebra (i.e. with union ∪, join ⊔, and subset

⊆) if for all 5 , 6 ∈ �:

2(5 ∪ 6) ⊆ 2(5) ∪ 2(6), (6.1)

2(5 ⊔ 6) ⊆ 2(5) ⊔ 2(6), (6.2)

2(6) ⊆ 2(5) ∧ 5 ⊆ 6 =⇒ 2(5) = 2(6). (6.3)

Remark. In the article by Moulin (1985), (6.1) is called Chernoff property; (6.3) is

the weakened version of Aizerman property.

Definition 6.2.3 (Path independence). Let 2 be a choice function on (. 2 is said to

satisfy path independence if for all 5 , 6 ∈ �:

2(5 ∪ 6) = 2(2(5) ∪ 2(6)), (6.4)

2(5 ⊔ 6) = 2(2(5) ⊔ 2(6)). (6.5)

Remark. Properties (6.4) and (6.5) are referred to as “path independence” since

they show that applying 2 to an expression with ∪ and ⊓ is equivalent to applying it

everywhere in the expression; see also Lemma 6.2.11.

We first prove that if a choice function is compatible with family algebra, then a

stronger version of (6.3) holds.

Lemma 6.2.4. Let 2 be a choice function on (. If 2 satisfies (6.1) and (6.3) for all

5 , 6 ∈ �, then

2(6) ⊆ 5 ⊆ 6 =⇒ 2(5) = 2(6). (6.6)

Proof. Let 5 , 6 ∈ � such that 2(6) ⊆ 5 ⊆ 6. Then 6 = 5 ∪ (6 \ 5) and by (6.1),

2(6) = 2(5 ∪ (6 \ 5)) ⊆ 2(5) ∪ 2(6 \ 5).

Since 2(6 \ 5) ⊆ 6 \ 5 , we have

2(6) ∩ 5 ⊆
(
2(5) ∪ 2(6 \ 5)

)
∩ 5 = 2(5).

Together with the fact that 2(6) ⊆ 5 , we deduce that 2(6) = 2(6)∩ 5 ⊆ 2(5). Therefore,

2(6) = 2(5) by (6.3). □

Proposition 6.2.5. Let 2 be a choice function on (. Then 2 is compatible with family

algebra if and only if 2 satisfies path independence.

Proof. Suppose 2 is compatible with family algebra. Let 5 , 6 ∈ �. By (6.1) and (6.2),

2(5 ∪ 6) ⊆ 2(5) ∪ 2(6) ⊆ 5 ∪ 6,

2(5 ⊔ 6) ⊆ 2(5) ⊔ 2(6) ⊆ 5 ⊔ 6.

Applying (6.6) yields (6.4) and (6.5). As a result, 2 satisfies path independence.

104 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Suppose now 2 satisfies path independence. Let 5 , 6 ∈ �. Then,

2(5 ∪ 6) = 2(2(5) ∪ 2(6)) ⊆ 2(5) ∪ 2(6),

2(5 ⊔ 6) = 2(2(5) ⊔ 2(6)) ⊆ 2(5) ⊔ 2(6),

hence (6.1) and (6.2) hold.

Suppose 2(6) ⊆ 2(5) and 5 ⊆ 6. Then by (6.4),

2(6) = 2(5 ∪ 6) = 2(2(5) ∪ 2(6)) = 2(2(5) ∪ 2(5)) = 2(5),

which means (6.3) holds. Therefore, 2 is compatible with family algebra. □

Remark. • This result relates path independence to compatibility with family al-

gebra. The path independence property is what we wish for a choice function,

but compatibility with family algebra is usually easier to verify.

• In the literature (Moulin, 1985), it is known that (6.1) and (6.6) are equivalent to

(6.4); both are equivalent to 2 being pseudo-rationalisable, i.e. there is a finite

set of total orders2 {R8}1≤8≤= such that for all 5 ∈ �,

2(5) =
⋃

1≤8≤=

max
5
R8 ,

which means 2(5) is the set of maximum elements of 5 with respect to the total

orders {R8}1≤8≤=.

Here, we imitate this result by adding the join operator ⊔ into consideration.

6.2.2 Reduction functions

Definition 6.2.6 (Family expression). A family expression on � is an expression E that

can be obtained by the following grammar:

E F 5 | E1 ∪ E2 | E1 ⊔ E2,

where 5 ∈ �.

In the following, we will carefully distinguish between a family expression E, which

is a purely syntactic object, and its semantics, which is the value represented by the

family expression E, denoted by ∥E∥ ∈ �.

Example. The situational value of an internal node = in Ginsberg’s algorithm is the

value represented by the family expression that corresponds to the subtree rooted at

=.3 Concretely, for the CGII in Figure 5.6 (page 92), we may write E� = 5al ∪ 5ar,

E� = 5bL ∪ 5bR, EA = E� ⊓ E� = (5al ∪ 5ar) ⊓ (5bL ∪ 5bR), where 5al = {∥ ®D(;al)∥} is the

singleton family containing MAX’s support at the leaf reached by action a by MIN and

l by MAX, and similarly for the other three families. We then have ∥E�∥ = val(�) ∈
P(P(*)), and similarly ∥E�∥ = val(�), ∥EA ∥ = val(A).

2A total order is a binary relation that is transitive, antisymmetric, and complete.
3This is true up to a minor detail: situational values in Ginsberg’s algorithm are computed with ⊓ while

it is ⊔ that appears in family expressions; see the discussion in Subsection 6.2.4.

6.2. CHOICE FUNCTIONS AS REDUCTION FUNCTIONS 105

Definition 6.2.7 (Fully reduced family expression). Let E be a family expression and 2

be a choice function on (. The fully reduced family expression 2∗ (E) is the expression

obtained by recursively rewriting E according to the following rules:

5 → 2(5),

E1 ∪ E2 → 2(2∗ (E1) ∪ 2
∗ (E2)),

E1 ⊔ E2 → 2(2∗ (E1) ⊔ 2
∗ (E2)).

Example. Continuing from the previous example, we have for example

2∗ (EA) = 2
(
2∗ (E�) ⊓ 2

∗ (E�)
)
= 2

((
2(5al) ∪ 2(5ar)

)
⊓

(
2(5bL) ∪ 2(5bR)

))
.

Definition 6.2.8 (Reduction function). A choice function 2 on (is called a reduction

function with respect to a set Φ of weak orders4 on ((represented as functions of the

form q : (→ R) if for all family expressions E,

∀q ∈ Φ,∀@ ∈ ∥E∥, ∃? ∈ ∥2∗ (E)∥, ? ≥q @. (6.7)

Intuitively, each function q : (→ R expresses a preference on the elements of (. If

2 is a reduction function with respect to Φ, it means that to find the maximum elements

in ∥E∥ with respect to preferences in Φ, we do not have to compute ∥E∥ itself; it is

sufficient to compute ∥2∗ (E)∥, which can be obtained by recursively applying 2 to the

family expression E in order to accelerate the computation of ∪ and ⊔ in E.

If 2 is a reduction function with respect to Φ, then 2 must respect the preferences in

Φ in the following sense.

Definition 6.2.9 (Compatibility with a set of weak-orders). A choice function 2 on (is

said to be compatible with a set Φ of weak-orders on (if for all 5 ∈ �,

∀q ∈ Φ,∀@ ∈ 5 , ∃? ∈ 2(5), ? ≥q @.

Now we can show a sufficient condition for a choice function to be a reduction

function.

Proposition 6.2.10. A choice function 2 on (is a reduction function with respect to Φ

if 2 is compatible with Φ and 2 is compatible with family algebra.

Proof. We first show a consequence of path independence of a choice function:

Lemma 6.2.11. A choice function 2 satisfies path independence if and only if ∥2∗ (E)∥ =
2(∥E∥) for all family expressions E.

Proof. The ⇐= direction is trivial. The =⇒ direction can be proved by applying

properties (6.4) and (6.5) recursively. □

Suppose 2 is compatible with Φ and family algebra. Let E be a family expression.

Since 2 is compatible with family algebra, by Proposition 6.2.5 2 satisfies path inde-

pendence, hence by Lemma 6.2.11 ∥2∗ (E)∥ = 2(∥E∥). Let q ∈ Φ and @ ∈ ∥E∥. Since

2 is compatible with Φ, there exists ? ∈ 2(∥E∥) = ∥2∗(E)∥ such that ? ≥q @. Hence,

(6.7) holds and 2 is a reduction function with respect to Φ. □

4A weak order is a binary relation that is transitive and complete. The difference between weak order and

total order is that different elements can tie under a weak order but not under a total order, since the latter

requires antisymmetry.

106 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Remark. For 2 to be a reduction function with respect to Φ, the compatibilities with

Φ and with family algebra are sufficient conditions as shown by this result, but also

almost necessary in the following sense:

• It is clear that if 2 is a reduction function with respect to Φ, then 2 is compatible

with Φ: to see this, for all families 5 , take E to be 5 in (6.7).

• Path independence is not necessary for 2 to be a reduction function with respect

to a fixed set Φ. However, if 2 does not satisfy path independence, then one can

find a preference (i.e. weak order) q such that 2 is compatible with {q} but 2 is

not a reduction function with respect to {q}.5

6.2.3 Partial reduction

For a reduction function 2, we can compute ∥2∗ (E)∥ instead of ∥E∥. However, the

computation of 2 can also be time-consuming. Hence, we are interested in knowing

whether it is possible to not fully implement 2 for every occurrence of it in ∥2∗ (E)∥ but

still satisfy (6.7).

Definition 6.2.12 (Approximation of a choice function). Let 2 be a choice function on

(. An approximation of 2 is a choice function 2̂ on (such that

∀ 5 ∈ �, 2(5) ⊆ 2̂(5) ⊆ 5 .

Definition 6.2.13 (Approximation of a fully reduced family expression). Let 2 be a

choice function on (. Let E be a family expression. An approximation of 2∗ (E) is a

family expression �2∗ (E) obtained from 2∗(E) by replacing an arbitrary number of the

symbol 2 by symbols representing arbitrary approximations of 2.

In particular, E itself can also be considered as an approximation of 2∗ (E) in which

all occurrences of 2 are replaced by the identity function on �. Furthermore, notice that

different occurrences of the symbol 2 can be replaced by symbols representing different

approximations of 2.

Example. Continuing the example after Definition 6.2.7. Then

21

((
22 (5al) ∪ 23 (5ar)

)
⊓

(
24 (5bL) ∪ 25 (5bR)

))
,

where 28 for 1 ≤ 8 ≤ 5 are symbols for (not necessarily the same) approximations of 2,

is an approximation of the fully reduced family expression 2∗ (EA).

An approximation of 2 outputs something between 2 and the identity function.

This monotonicity is preserved by an arbitrary family expression if 2 satisfies path

independence.

Proposition 6.2.14. Let 2 be a choice function on (that satisfies path independence.

Then, for all family expressions E and all approximations �2∗ (E) of 2∗ (E),

∥2∗ (E)∥ ⊆ ∥�2∗ (E)∥ ⊆ ∥E∥. (6.8)

5For example, if for some 5 , 6 ∈ �, 2 (5 ∪ 6) ⊈ 2 (5) ∪ 2 (6) , then consider a q such that all elements

that are maximum in 2 (5 ∪ 6) with respect to q are in 2 (5 ∪ 6) \ (2 (5) ∪ 2 (6)) .

6.2. CHOICE FUNCTIONS AS REDUCTION FUNCTIONS 107

Proof. We will prove this statement by strong induction.

Let E be a family expression of depth6 0 and �2∗ (E) be an approximation of 2∗ (E).

Then E = 5 with 5 ∈ � and �2∗ (E) = 2̂(5) where 2̂ is an approximation of 2. Hence,

(6.8) holds by the definition of an approximation of a choice function.

Now suppose the statement holds for all family expressions of depth at most = ∈ N
and all their approximations. Let E be a family expression of depth = + 1. Then

E = E1 ∪ E2 or E = E1 ⊔ E2, where E1 and E2 are two family expressions of depth at most

=.

We only consider the first case, since the argument for the second case is identical.

In this case, 2∗ (E) = 2(2∗ (E1) ∪ 2
∗ (E2)). Let �2∗ (E) be an approximation of 2∗ (E). Then�2∗ (E) can be written as 2̂(�2∗ (E1) ∪�2∗ (E2)), where 2̂ is an approximation of 2, �2∗ (E1)

and �2∗ (E2) are respectively an approximation of 2∗ (E1) and 2∗ (E2).

Our goal is to establish (6.8). By the induction hypothesis, we have ∥2∗ (E8)∥ ⊆

∥�2∗(E8)∥ ⊆ ∥E8 ∥ for 8 ∈ {1, 2}. Hence,

∥�2∗ (E)∥ = 2̂(∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥) ⊆ ∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥ ⊆ ∥E1∥ ∪ ∥E2∥ = ∥E∥,

which is the second part of (6.8).

To prove the first part of (6.8), first notice that since 2 satisfies path independence,

2(∥E8 ∥) = ∥2
∗ (E8)∥ for 8 ∈ {1, 2} by Lemma 6.2.11. By the induction hypothesis,

2(∥E1∥) ∪ 2(∥E2∥) = ∥2
∗ (E1)∥ ∪ ∥2

∗ (E2)∥ ⊆ ∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥ ⊆ ∥E1∥ ∪ ∥E2∥.

Also, by path independence, 2 satisfies (6.1), which means

2(∥E1∥ ∪ ∥E2∥) ⊆ 2(∥E1∥) ∪ 2(∥E2∥).

Applying (6.6) to 5 = ∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥ and 6 = ∥E1∥ ∪ ∥E2∥ yields

2(∥E1∥ ∪ ∥E2∥) = 2(∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥).

Therefore,

∥2∗ (E)∥ = 2(∥E∥) = 2(∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥) ⊆ 2̂(∥�2∗ (E1)∥ ∪ ∥�2∗ (E2)∥) = ∥�2∗ (E)∥,
which is the first part of (6.8), thus concluding the induction. □

As a consequence, any approximation of a reduction function can be used to partially

reduce family expressions without sacrificing optimality. More formally.

Corollary 6.2.15. Let 2 be a choice function on (that is compatible with Φ and family

algebra. Then for all family expressions E and all approximations �2∗(E) of 2∗(E),

∀q ∈ Φ,∀@ ∈ ∥E∥, ∃? ∈ ∥�2∗ (E)∥, ? ≥q @.
Proof. This is a direct result from Proposition 6.2.10 and Proposition 6.2.14. □

6The depth of a family expression is defined similarly to the depth of a Boolean expression

108 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

6.2.4 Conclusion

We have shown that a choice function that is compatible with family algebra and a set

of weak-orders Φ can be used as a reduction function so that a fully reduced family

expression 2∗(E) preserves the maximum values in E with respect to the preferences in

Φ. Moreover, every partially reduced family, i.e. an approximation �2∗ (E), also preserves

this optimality.

These results give us more freedom in the implementation of 2. For example, we can

have an online algorithm 2̂ that computes an approximation of 2 such that 2̂ prioritises

discarding elements from 5 ∈ � that can be easily proven non-optimal, and 2̂ computes

exactly 2(5) only when there is enough time. Likewise, we can also have a lazy version,

which only applies 2 to a sub-expression when it is explicitly told to do so by the tree

search algorithm.

We will apply the notion of reduction function to Ginsberg’s algorithm. As a caveat,

throughout this section we use union ∪ and join ⊔ from family algebra, not union and

meet ⊓ as in Ginsberg’s algorithm. However, this does not pose any technical difficulty,

since in Ginsberg’s algorithm, instead of computing supports for local strategies, we

may compute losing supports for them, i.e. the set of worlds in which a local strategy

loses. In that case, Ginsberg’s algorithm becomes MiniMax(P(P(*)), eval,∪,⊔) with

eval(;) ≔ {∥ ®D(;)∥}, where ∥ ®D(;)∥ is the complement of the set ∥ ®D(;)∥ in *. In the

following, we ignore this detail and consider that reduction functions are defined with

respect to ⊓ in the case of Ginsberg’s algorithm.

The applicability of reduction functions (and theirs approximations), however, is

beyond this particular algorithm. For instance, Dasgupta et al. (1996) make use of

reduction functions on the set of all finite subsets of real vectors of the same fixed

length with respect to one weak order, in the setting of game tree search for multi-

objective games.

As a matter of fact, both Ginsberg’s algorithm and multi-objective game tree search

by Dasgupta et al. (1996) can be unified in the same framework, akin to nondeterministic

planning (Rintanen, 2004; Brafman et al., 2013). We leave the complete formalism of

this framework that we call nondeterministic game to future work.

6.3 Strategy prunings

Equipped with the notion of reduction function, we are ready to talk about strategy

prunings in Ginsberg’s algorithm, which aim to discard vectors from situational values

computed by Ginsberg’s algorithm without modifying the maxmin value computed.

Generally speaking, we are interested in choice functions on (= P(*) such that we

can compute the pure maxmin value from 2(val(A)). If this is the case, then applying 2

to Ginsberg’s algorithm is a sound strategy pruning method.

6.3.1 Elimination of dominated strategies in Ginsberg’s algorithm

Recall that local strategies at a node = are implicitly represented by their support in

the situational value of =. If the support of a local strategy B+ at = is included in the

support of another different local strategy B′+ at =, then we can say that B+ is dominated

by B′+, in the usual game-theoretic sense of dominance. Indeed, it will do MAX no

harm to switch their local strategy at = from B+ to B′+, since if = is ever reached during

the gameplay, then a win under B+ is also a win under B′+.

6.3. STRATEGY PRUNINGS 109

In particular, ignoring dominated local strategies will not change the maxmin value.

This motivates us to consider the following choice function on P(*): discarding all

dominated local strategies from all situational values. Concretely, we use the maximal

elements operator from the family algebra, which is defined by

∀ 5 ∈ P(P(*)), 5 ↑ = {? ∈ 5 | ∀@ ∈ 5 , ? ⊆ @ =⇒ ? = @} ⊆ 5 .

Notice that this operator prunes all dominated subsets from a family so that after

applying the choice function, the result will be an antichain, i.e. a set of elements that

are pairwise incomparable in terms of set inclusion.

It is straightforward to verify that the operator ↑ is a reduction function in the

sense of Definition 6.2.8 with respect to the set of preferences Φ = {q*′ }*′⊆* where

q*′ (*
′′) = 1 if *′ ⊆ *′′ and 0 otherwise.7 Hence, we can use the operator ↑ or its

approximations (which correspond to a partial elimination of dominated strategies) as

a sound strategy pruning method in Ginsberg’s algorithm.

Consider union and meet augmented by this reduction function:

5 ∪∗ 6 ≔ (5 ∪ 6)↑,

5 ⊓∗ 6 ≔ (5 ⊓ 6)↑,

where 5 , 6 ∈ P(P(*)) are two arbitrary families. In the following, we refer to Gins-

berg’s algorithm with ↑ as reduction function, i.e. MiniMax(P(P(*)), eval,∪∗,⊓∗), as

Ginsberg’s algorithm with reduction.

As a parenthetical note, Ginsberg (2001) shows that the set of reduced families

+ = P(P(*))↑ = { 5 ∈ P(P(*)) | 5 ↑ = 5 }

together with these two binary operators∪∗ and⊓∗ form a distributive lattice (+,∪∗,⊓∗)
with the partial order ⪯ on + defined as

∀ 5 , 6 ∈ +, 5 ⪯ 6 ⇐⇒ ∀? ∈ 5 , ∃@ ∈ 6, ? ⊆ @.

This partial order is quite natural to understand: a family of strategies 6 is at least as

advantageous for MAX as another family of strategies 5 if and only if any strategy in 5

is dominated by at least one strategy in 6. This lattice structure turns out to be critical

for Ginsberg’s algorithm, since it makes alpha-beta pruning sound for the algorithm.

We will explore this subject thoroughly in Section 6.4.

6.3.2 Non-locality and its implications on sound strategy prunings

Optimality of ↑

We have observed that ↑ is a reduction function that can be used as a sound strategy

pruning method. It is actually the optimal one in terms of cardinality, due to non-

locality. Concretely, let 2 be an arbitrary choice function. If there is 5 ∈ � such

that |2(5) | < | 5 ↑ |, then 2 cannot be used as a sound strategy pruning method for the

following reason.

Since 5 ↑ \ 2(5) is not empty, let ? ∈ 5 ↑ \ 2(5). Consider an arbitrary element

@ ∈ 5 . If ? ⊆ @, then ? = @ by definition of 5 ↑. Hence, |? ∩ @ | < |@ | if ? ≠ @.

Now consider the vector game in which MIN picks between a leaf with vector ? as its

7Intuitively, under the preference q*′ , we look for strategies that allow us to win in every world in *′.

110 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

reward and a MAX’s node, at which MAX picks between leaves leading to vectors in

the family 5 . Then the situational value of the root reads

5 ⊓ {?} = {? ∩ @ | @ ∈ 5 }.

In this family, the (only) vector with the largest cardinality is ? by the argument

above, which means the maxmin value of this game is |? |. However, if we apply 2 to

Ginsberg’s algorithm, the vector ? is pruned from 5 , hence the vectors in 2(5) ⊓ {?}
have a cardinality strictly smaller than |? |. This means applying 2 yields a wrong

maxmin value, therefore 2 is not a sound strategy pruning method.

As a conclusion, no sound strategy method represented by a choice function can

ever prune strictly more strategies than ↑.

Greedy strategy prunings

We now have a brief look at some very natural but unsound strategy prunings.

We have already seen that keeping only one strategy with maximum support size

at each node is not a sound strategy pruning method, again due to non-locality. For

example, in the game in Figure 5.6 (page 92), action r does not have maximum support

size at node �. However, it is part of the maxmin strategy due to its non-local interaction

with action R at node �. If we discard the vector corresponding to l from the situational

value val(�) (and the vector corresponding to L from val(�)), we will not obtain the

correct maxmin value because all maxmin strategies are no longer in consideration.

This can be generalised to all : ∈ N: keeping only : strategies with the largest

support size is not sound. Imagine that a universe * with 2= different worlds. Let 5

and 6 be two families of subsets of* such that

• each family contains
(2=
=

)
/2 + 1 subsets of*;

• each subset of* in 5 or 6 has size =;

• only one subset appears in both 5 and 6 (i.e. | 5 ∩ 6 | = 1).

Now, imagine a CGII similar to the one in Figure 5.6 (page 92): at A, MIN chooses

between node � and node �. At node �, MAX has
(2=
=

)
/2 + 1 different actions, each

action leads to a leaf with a different support from the family 5 . Similarly, at node �

actions lead to leaves with different support from the family 6. Then val(A) = 5 ⊓6, and

the maxmin value is =. In addition, the unique maxmin strategy consists in choosing a

leaf at node � and a leaf at node � such that these two leaves have the same support;

any other strategy has a support of size strictly smaller than =.

Suppose without loss of generality that Ginsberg’s algorithm visits node � before

node �. To compute the correct maxmin value for this game, a choice function cannot

eliminate any strategy from 5 since we have no information about 6 yet. For instance,

if 2 eliminates some ? from 5 , then in case 5 ∩ 6 = {?}, the algorithm no longer

computes the correct maxmin value =. In summary, we must keep all
(2=
=

)
/2+1 subsets

in 5 . By varying =, this shows that keeping only : strategies with the largest support is

not sound for every fixed : .

On the other hand, although these greedy types of strategy pruning are not sound

in general, they are very useful for computing a lower bound of the maxmin value of

a game,8 especially because for all fixed : , keeping only : strategies (in all families

8A strategy pruning method is equivalent to restricting MAX’s local strategies in a certain way, hence

always yields a lower bound for the maxmin value.

6.3. STRATEGY PRUNINGS 111

computed by the algorithm) limits the combinatorial explosion and leads to a linear

running time for Ginsberg’s algorithm. In addition, in games with much fewer non-local

interactions (unlike the counterexample above), lower bounds computed this way can

be very tight, or even exact.9

A final note on non-locality

Non-local interactions are computed in our game tree search algorithm by the operator

⊓, which is also the place where all combinatorial explosions arise: a meet of = families

of 2 sets can generate a set of size O(2=). The hope of an efficient implementation of

this crucial operator is also shattered by Doyen and Raskin (2011), who show that this

operator is NP-hard to compute. This is hardly surprising, since we have already seen

evidence of this in the proof of Proposition 5.3.3 (page 76): finding the maximal clique

of a graph of size = can be reduced to the computation of the meet of = families of 2

subsets of a set of size =.

In summary, the computational difficulty (notably, the NP-completeness) of com-

puting the maxmin value of a vector game comes from the need to surmount the problem

of non-locality, a phenomenon caused by incomplete information. Any pruning or op-

timisation that does not take non-locality fully into account is doomed to failure, which

can be used as a trick to quickly know if a given pruning is not sound.

6.3.3 Maxmin lower bound pruning

Lastly, let us present another sound strategy pruning method. If we know that the

maxmin value is bounded from below by =, then we can discard all subsets of cardinality

strictly smaller than =. The reason is straightforward: the operators ∪ and ⊓ never

strictly increase the cardinality of a subset in a family. Indeed, ∪ does not change

the cardinality of a subset, while ⊓ computes the intersection between this subset and

subsets from another family, which results in no larger subsets. Applying this reasoning

recursively, we can show that if the maxmin value if at least =, then no local strategy

with support size strictly smaller than = can be part of a maxmin strategy; hence it is

sound to eliminate the support of such strategies.

For every fixed =, this pruning can be described by as a choice function that can

be easily shown to be a reduction function in the sense of Definition 6.2.8 with respect

to the weak order induced by q= (*
′) = min(|*′ |, =) for all *′ ⊆ *.10 Hence, for a

game with a maxmin value of at least =, we can use this reduction or its approximations

(which correspond to a partial elimination of subsets of size strictly smaller than =) as

a sound strategy pruning method in Ginsberg’s algorithm.

Furthermore, notice that if = is not a lower bound of the maxmin value of a game,

this pruning yields a family containing only ∅ at the root, since every subset in the

situational value of the root will be replaced by ∅. Therefore, maxmin lower bound

pruning can be used to decide whether a given threshold of maxmin value is achievable;

if it is, then we can even know the exact maxmin value from the output.

Remark. This seems to contradict the optimality of ↑, but it actually does not: ↑ is

optimal among all strategy prunings that are sound for all games, while this pruning

(with the parameter =) is only sound for games with a maxmin value of at least =.

9For a given game, a lower bound computed by using a strategy pruning method is exact if and only if

there is a maxmin strategy such that no local strategy involved in it is pruned.
10For this, technically we need to assume that all families contain ∅, and the pruning replaces every subset

of size strictly smaller than = by ∅.

112 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

We refer to this kind of pruning as maxmin lower bound pruning, to emphasise its

reliance on the knowledge of a lower bound. Such a lower bound can be obtained in

many ways. For example:

• We can evaluate a randomly drawn strategy of MAX to get a lower bound on the

maxmin value.

• We can ameliorate the previous method by a game-specific pre-analysis so that

we are capable of drawing better strategies of MAX to get a better lower bound.

• A lower bound is also naturally obtained during the execution of Ginsberg’s

algorithm when the root is a node of MAX: each time the depth-first algorithm

returns to the root, we have a new lower bound provided by the best strategies

from the branches already explored.

6.4 Alpha-beta prunings under partial order

We now turn our attention to game tree pruning for Ginsberg’s algorithm; we begin

with one very generic type of game tree pruning method called alpha-beta pruning. Its

applicability is way beyond games with perfect information or CGIIs. The following

content in this section has been previously published in IJCAI 2022 (Li et al., 2022).

6.4.1 Related work

Search in graphs containing AND- and OR-nodes is used as a basis of many algorithmic

solutions to Artificial Intelligence problems. In such graphs, OR-nodes typically model

choice nodes at which an agent can choose a successor, while AND-nodes model an

opponent. For instance, in robust planning with nondeterministic actions, an AND-

node models the outcome of an action: a strategy must be valid whatever the outcome

(Kissmann and Edelkamp, 2009). Similarly, when solving a zero-sum two-player

(sequential) game for a player, OR-nodes are those at which it is their turn to play, while

AND-nodes correspond to their opponent (van den Herik et al., 2002): the value of

an OR-node is 1 if and only if at least one move leads to a node with value 1; dually,

at AND-nodes, the values of the children are conjoined. More generally, in games

that can have more than two outcomes, such as chess or checkers (Schaeffer et al.,

2007), AND-nodes (respectively OR-nodes) correspond to a minimum (respectively

maximum) operator on the values of their children.

A fundamental question is that of evaluating rooted AND-OR directed acyclic

graphs (DAGs), which means computing the value of their root given a value for

each of their leaves. For instance, in games with complete information, selecting the

best move for the current turn amounts to evaluating each of the children of the root.

This problem has been thoroughly studied in the literature (Marsland, 1986) under

the setting of totally ordered values (Boolean or real) and the standard AND/OR or

min/max operators. Following Ginsberg and Jaffray (2002), we investigate here a more

general setting, where the values are taken from a distributive lattice (+,∧,∨) (i.e. a

partially ordered set with a least upper bound and a greatest lower bound for all pairs of

elements), and operators for AND- and OR-nodes are taken to be the meet ∧ and join ∨,

respectively. This setting arises naturally in many applications, in particular in games

with incomplete information. Examples of such games are Skat (Kupferschmid and

Helmert, 2006; Buro et al., 2009; Rebstock et al., 2019; Edelkamp, 2020), Bridge (Levy,

6.4. ALPHA-BETA PRUNINGS UNDER PARTIAL ORDER 113

1989; Ginsberg, 2001; Cazenave and Ventos, 2020), Hearts and Spades (Sturtevant and

White, 2006).

A well-known technique for evaluating AND-OR graphs is alpha-beta pruning,

which maintains a lower bound U (respectively upper bound V) on the value of each

OR-node (respectively AND-node), and uses them to prune some of their successors

(Knuth and Moore, 1975; Pearl, 1982; Marsland, 1986). This technique is currently used

in strong chess programs (Haworth and Hernandez, 2021) combined with sophisticated

evaluation functions such as NNUE neural networks that were first used in Shogi

(Nasu, 2018). However, the generalisation of alpha-beta pruning to AND-OR DAGs

with partially ordered values is non-trivial since two values from a lattice are not

always comparable. We build on the seminal work by Ginsberg and Jaffray (2002) and

generalise it by proving the correctness of lattice-valued alpha-beta pruning with the

consideration of heuristic functions.

Orthogonally, we investigate caching techniques for alpha-beta pruning in lattice-

valued DAGs. The question is again non-trivial because nodes are, in general, revisited

with different U and V from during previous visits. For this, we propose a new algo-

rithm called ‘alpha-beta duo’. We state its correctness and experimentally evaluate its

efficiency.

In the following, we first present the problem setting of AND-OR graph evaluation

under partial order and alpha-beta pruning in general. Then we extend the work by

Ginsberg and Jaffray (2002) and present alpha-beta duo. Finally, we report experimental

results and conclude.

6.4.2 AND-OR graph evaluation under partial order

Throughout this section, we consider rooted DAGs, which contain a (necessarily unique)

root A such that there exists a directed path to every vertex from A. An AND-OR DAG is a

rooted DAG the internal nodes of which are partitioned into AND-nodes and OR-nodes.

Note that nodes do not have to be alternating. In games, AND-nodes and OR-nodes are

typically considered to be MIN’s and MAX’s decision nodes, respectively.

Example. The public tree in a two-player CGII, the internal nodes of which are

partitioned into decision nodes for MAX and those for MIN, is an example of an

AND-OR DAG that happens to be a tree.

We are interested in the problem of evaluating the root value of an AND-OR DAG,

given values for all its leaves. More concretely, we aim to compute the situational

value of the root as defined by the minimax algorithm MiniMax(+, eval,∨,∧) as in

Subsection 5.4.3 (page 93), where (+,∧,∨) forms a bounded distributive lattice.11 The

reason we restrict ourselves to situational values coming from a distributive lattice will

be explained in Subsection 6.4.3.

Formally, given an AND-OR DAG �, a bounded distributive lattice (+, ⪯,∧,∨),
and an evaluation function eval : L(�) → + assigning a value in + to each leaf of �,

the goal is to compute val(A), where the situational value val(=) of = ∈ # is defined

recursively by:

• for a leaf node =, val(=) ≔ eval(=);

• for an internal AND-node =, val(=) ≔
∧

=′∈C(=) val(=′);

11See Appendix A.3.2 for relevant definitions from lattice theory.

114 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

• for an internal OR-node =, val(=) ≔
∨

=′∈C(=) val(=′).

Since � is a DAG, the function val : # → + is well-defined.

Example. Consider the DAGs in Figure 6.1, where circle and square nodes represent

AND-nodes and OR-nodes, respectively. On the left, the lattice is the set of Boolean

vectors of length 4 (denoted as words), with bitwise AND and bitwise OR as meet and

join, respectively. One can easily verify that val(A) = 1100. On the right, the lattice is

the set of Boolean vectors of length 3, and val(A) = 001.

A

0100
=

1101 1000

R

A

111

B

001
C

110 001

D

010 001

Figure 6.1: Two AND-OR DAGs with partially ordered values.

Example applications

Many important problems are in fact AND-OR DAG evaluation in disguise. The

simplest one is Boolean circuit evaluation. Here AND- and OR-nodes model AND and

OR gates, the lattice is the Boolean algebra (i.e. + = {0, 1} with 0 ⪯ 1 and logical

conjunction and disjunction as meet and join), and the evaluation function encodes the

inputs of the circuit.

Solving a game with perfect information typically involves computing the maxmin

value of a game tree, which can be regarded as evaluating an AND-OR DAG: AND-

and OR-nodes are respectively choice nodes of player MIN and of player MAX, the

lattice is (+, ≤,min,max) with+ a totally ordered set such as Z or R, and the evaluation

function gives the rewards for MAX of terminal nodes, or a heuristic value if the search

is cut at some depth. Then the situational value of the root is the maxmin value of the

game.

In games with incomplete information, non-trivial lattices come into play. For exam-

ple, we have already seen in Subsection 6.3.1 that Ginsberg’s algorithm with reduction

MiniMax(P(P(*))↑, eval,∪∗,⊓∗) returns a value of the root from which the maxmin

value of the game can be easily deduced. This is another instance of AND-OR DAG

evaluation under partial order since Ginsberg (2001) shows that (P(P(*))↑,∪∗,⊓∗)
forms a bounded distributive lattice.

6.4.3 Alpha-beta pruning

Shallow and deep pruning

Most of the literature on alpha-beta pruning concerns only totally ordered values, such

as real numbers. For an overview of alpha-beta pruning in this setting, see the review

by Marsland (1986). Since AND-OR DAGs with partially ordered values are useful to

6.4. ALPHA-BETA PRUNINGS UNDER PARTIAL ORDER 115

model richer problems, Dasgupta et al. (1996) proposed alpha-beta pruning in this new

setting for multi-criteria game.

Ginsberg and Jaffray (2002) gave the first thorough study on this subject; we give

here a summary of their results. They consider the setting of AND-OR tree evaluation

with a set + and two binary operators ∨ and ∧ on + that are associative, commutative,

and idempotent.

The notion of shallow pruning is illustrated by the game tree in Figure 6.2 (left).

Hence, shallow pruning is sound if and only if U ∨ (E ∧)) = U for all U, E,) ∈ +
with E ⪯ U, which is actually equivalent to the absorption identity G ∨ (G ∧ H) = G for

all G, H ∈ + . Therefore, shallow pruning is sound if and only if (+,∨,∧) is a lattice

(Ginsberg and Jaffray, 2002, Proposition 3.5).

Similarly, the notion of deep pruning is illustrated by the game tree in Figure 6.2

(right). The soundness of deep pruning is equivalent to the distributivity of ∨ and ∧
over each other; hence, deep pruning is sound if and only if (+,∨,∧) is a distributive

lattice (Ginsberg and Jaffray, 2002, Proposition 4.2).

OR

U

AND

E)

OR

U

AND
OR

. . .
AND

E)

Figure 6.2: Shallow pruning vs. deep pruning;) can be pruned (shallowly or deeply)

if E ⪯ U.

Recall now that Ginsberg and Jaffray (2002) assumed ∨ and ∧ to be associative,

commutative, and idempotent. These three properties are intrinsically related to as-

sumptions about the rationality of MAX and MIN. Let us take MAX and their operator

∨ as an example to illustrate this.

• The associativity of∨ (i.e. (G∨ H) ∨ I = G∨ (H∨ I) for all G, H, I ∈ +) is equivalent

to saying that the two game trees in Figure 6.3 are equivalent according to MAX.

• Similarly, the commutativity of ∨ (i.e. G∨ H = H∨ G for all G, H ∈ +) means MAX

is indifferent to the ordering of their actions.

• The idempotency (i.e. G ∨ G = G for all G ∈ +) means that for MAX, having two

actions with the same results is equivalent to having only one such action.

Hence, to rephrase the result above concerning deep pruning, what Ginsberg and

Jaffray (2002) actually showed is that deep pruning is sound for rational players if and

only if the set of values is a distributive lattice. However, these properties of rationality

do not necessarily hold for human players (Dhami, 2019). Loddo and Saiu (2010)

studied the setting in which these properties are violated, and showed that deep pruning

is still sound for tropical algebras for some relaxed notion of rationality. For us, it is

reasonable enough to assume these properties holds for our setting. Therefore, we focus

on the case in which (+,∨,∧) forms a distributive lattice.

116 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

MAX

I

MAX

G H

MAX

G

MAX

H I

Figure 6.3: Associativity of ∨ dictates the equivalence of these two game trees from

MAX’s perspective.

OR

U

AND
OR

. . .
AND

E)

OR

100

AND

OR

010

AND

110)

Figure 6.4: Deep pruning vs. expected pruning.

Gaps in the literature

We argue that under partial order, deep pruning, the form of which is given again in

Figure 6.4 (left), does not capture every cut an alpha-beta search should perform when

values are partially ordered, consider Figure 6.4 (right). The lattice is again the set

of Boolean vectors of length 3, with bitwise AND and bitwise OR as meet and join,

respectively. When an alpha-beta search algorithm descends to the bottommost AND-

node, the value of U would be 110, which is the join of the value of an already explored

child of two ancestor OR-nodes. We would like the algorithm to prune the subtree)

since the value of its parent node cannot be better than the current value of U (due to

the sibling of)). However, deep pruning, as it is defined in the literature (Ginsberg and

Jaffray, 2002, for instance), does not apply since the value of U does not come from

a child of one single ancestor node. Note that this phenomenon is specific to lattices

that are not totally ordered, since otherwise the meet or join (i.e. min or max) of two

values is always one of them, hence shallow and deep pruning captures all prunings in

a standard alpha-beta search.

This loophole of deep pruning can be closed using the insertion identities ((A.1)

and (A.2), page 166) of a distributive lattice. For example,

G ∨ (H ∧ I) = G ∨
(
H ∧ (G ∨ I)

)
holds for all G, H, I ∈ + . This means in Figure 6.4 (right), we can insert a value 100 to

the leaf with value 010, which yields 100 ∨ 010 = 110 and triggers the pruning of) .

However, there is also another question not formally addressed in the literature,

which is the initialisation of node values. In standard alpha-beta search, one typically

initialises the value of an OR-node (respectively AND-node) to be U (respectively V)

(Knuth and Moore, 1975) or −∞ (respectively +∞) (Marsland, 1986) (note that −∞ and

+∞ translate to ⊥ and ⊤ in our context). However, one may have access to a heuristic

evaluation of nodes, typically by evaluating a relaxed version of the problem which

6.4. ALPHA-BETA PRUNINGS UNDER PARTIAL ORDER 117

is easier to solve. For instance, a player cannot do better in a game with incomplete

information than in the same game but with complete information. The latter being

much easier to solve, the value obtained can be used as a heuristic in the original game

with incomplete information. Ideally, initialising values with an accurate heuristic

should accelerate the search by finding cuts earlier.

Therefore, in the next subsection, we will give a formal treatment to this subject and

formally prove, once for all, that the expected pruning in Figure 6.4 (right) is indeed

sound, even when combined with a heuristic function, provided that the heuristic

function we use satisfies some admissibility.

6.4.4 Alpha-beta search with heuristic function

Algorithm 4: Alpha-beta search

1 def AlphaBeta(node =, U, V):

2 � = ℎ(=, U, V)
3 E ← �

4 determine the successor nodes =1, . . . , =1 of =

5 for 8 in {1, . . . , 1}:
6 if = is an OR-node:

7 U← U ∨ E
8 else:

9 V← V ∧ E
10 if U ⪰ V:

11 break

12 Echild ← AlphaBeta(=8 , U, V)

13 if = is an OR-node:

14 E ← E ∨ Echild

15 else:

16 E ← E ∧ Echild

17 return E

To fill these two gaps in the literature, we first formalise alpha-beta search under

partial order with initialisation function in Algorithm 4. We denote by ℎ the initialisation

function. In general, its value depends on the current U and V, so we define it to yield a

value ℎ(=, U, V) ∈ + for all nodes = and U, V ∈ + . Note that since a non-trivial initial

value can be used for a node = (Line 3), a cut may happen even before the first child

of = is explored; hence we update U and V (Line 7 and Line 9) and determine whether

there is a cut (Line 10) at the beginning of the main loop. This is otherwise the same

algorithm as in the literature (Marsland, 1986, for instance).

It can be seen that Algorithm 4 will perform the wished pruning in the example

in Figure 6.4 (right). By mimicking the proof by Knuth and Moore (1975), we prove

that such pruning is indeed sound, thereby extending the result by Ginsberg and Jaffray

(2002) to its full form, provided that the initialisation function ℎ satisfies a certain

admissibility condition.

Definition 6.4.1 (Admissible heuristic function). A heuristic function ℎ is said to be

118 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

admissible for � and + if for all nodes = in � and all U, V ∈ + ,

ℎ(=, U, V)

= val(=) if = is a leaf node;

⪰ val(=) ∧ V if = is an AND-node;

⪯ val(=) ∨ U if = is an OR-node.

Note that this condition is satisfied by the initialisation values usually used in

the literature, such as U or −∞ for OR-nodes (and V or +∞ for AND-nodes). It

is also satisfied when ℎ(=, U, V) overestimates val(=) for internal AND-nodes and

underestimates it for internal OR-nodes.

We denote the value returned by Algorithm 4 with input =, U, V by 5 (=, U, V). The

correctness of Algorithm 4 is a consequence of the following central result.

Proposition 6.4.2. If ℎ is an admissible heuristic function for � and + , then for all

nodes = of � and all U, V ∈ + , we have

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ val(=)

)
. (6.9)

Proof idea. This is proved by a structural induction on = and an induction to relate the

value of E after each loop to the value returned for the children of =. See the appendix

for the full proof. □

Intuitively, Proposition 6.4.2 states that the value returned by Algorithm 4 is the

exact situational value of = up to a factor of U and V. Hence, even for partially ordered

values, alpha-beta search can be interpreted as search with a pruning window.

Now it follows that Algorithm 4 is correct in the sense that if we use a lower and an

upper bound as the initial search window at a node, we can recover its exact situational

value using the value returned by the algorithm.

Corollary 6.4.3. If ℎ is admissible for � and + , then for all nodes = of � and all

E, E ∈ + satisfying E ⪯ val(=) ⪯ E, we have val(=) = E ∧
(
E ∨ 5 (=, E, E)

)
. In particular,

val(=) = 5 (=,⊥,⊤).

Proof. Plug U = E and V = E into (6.9), and use the fact that E ∨ val(=) = val(=) =
E ∧ val(=). □

Importantly, contrary to the case of totally ordered values, generally it is not true

that the stronger equality val(=) = 5 (=, E, E) holds, as the example in Figure 6.1 (left)

shows. Let ℎ(A, ·, ·) = ⊥ = 0000 and ℎ(=, ·, ·) = ⊤ = 1111, so that ℎ is admissible.

Recall that val(A) = 1100. For E = 1000 and E = 1110, indeed E ⪯ val(A) ⪯ E.

However, 5 (A, E, E) = 1101 ≠ val(A) since an U-cut happens in the call on = (Line 10)

after examining its first child, since at this point U = V = 1100. However, since U = E

and V = E yield no constraint on the fourth component of the values, we still have

val(A) = E ∧
(
E ∨ 5 (A, E, E)

)
, as stated in Corollary 6.4.3.

6.4.5 Alpha-beta duo algorithm

The trouble of standard alpha-beta search is that the returned value is equal to the exact

situational value only up to a factor of U and V. It is therefore a non-trivial question how

to reuse a previously computed value, since subsequent revisits of a node may come

with different search windows.

6.4. ALPHA-BETA PRUNINGS UNDER PARTIAL ORDER 119

In alpha-beta search with cache for totally ordered values (Marsland, 1986, for

instance), one can exploit the fact that with usual value initialisation, the value 5 (=, U, V)
satisfies 5 (=, U, V) < V ⇒ val(=) ≤ 5 (=, U, V) and 5 (=, U, V) > U ⇒ val(=) ≥
5 (=, U, V). In particular, if U < 5 (=, U, V) < V, then 5 (=, U, V) = val(=). Hence, by

comparing 5 (=, U, V) to U and V, one can determine whether it is exact or a lower/upper

bound, and store it in the cache with an appropriate flag.

However, this does not hold in general for partially ordered values, as shown on

Figure 6.1 (right). For U = 010 and V = 110, a V-cut happens after evaluating the first

child of �, and an U-cut after evaluating the first child of �. Hence, the algorithm

returns 010 for ', which is neither a lower nor an upper bound of the exact situational

value 001. In fact, these two values are incomparable in the lattice. If ' is an internal

node in a DAG, then caching this returned value 010 may cause an evaluation error

when the algorithm revisits '.

To tackle this difficulty, we propose a new algorithm named ‘alpha-beta duo’, which

computes a pair of values for all nodes instead of one single value.12 The algorithm

is presented in Algorithm 5, where Cache refers to a transposition table the entries

of which are pairs of values indexed by nodes of �, and (ℎ, ℎ) refers to a pair of

initialisation functions for which we assume the following property.

Definition 6.4.4 (Admissible initialisation function). A pair (ℎ, ℎ) of initialisation

functions is said to be admissible for � and + if for all nodes = in �, ℎ(=) ⪯ val(=) ⪯

ℎ(=) holds, and in addition, if = is a leaf node, ℎ(=) = ℎ(=) = val(=) holds.

In other words, admissible ℎ and ℎ respectively underestimates and overestimates

the value of a node. Note that ℎ and ℎ that assign respectively ⊥ and ⊤ to all internal

nodes form an admissible pair, which can always be used if one does not have better

heuristic functions.

Alpha-beta duo search works in the following manner.

• First, variables 2 and 2 denote respectively the best lower and upper bound of

val(=) available to the algorithm before this call. If = has already been visited,

then 2 and 2 are retrieved from the cache. Otherwise, they are given by the

initialisation functions ℎ and ℎ. If 2 = 2, (2, 2) is returned immediately.

• Otherwise, by symmetry, consider the case in which = is an OR-node. During

the main loop, E and E are respectively the cumulative lower and upper bound of

val(=) (notice that they are both initialised to ⊥ for an OR-node). If a cut ever

happens, it means not all children of = have been evaluated, hence E is not a valid

upper bound of val(=). Then we take E to be 2, the best upper bound previously

known. On the other hand, E, which is the join of lower bounds of children of =

that have been evaluated, is a valid lower bound, so we keep it.

• Finally, after the main loop, E and E are the lower and upper bounds of val(=)
computed by the current call. Hence, they are combined with the previously

known bounds 2 and 2 to yield to the best currently known bounds on val(=) and

they are cached.

We now prove that the alpha-beta duo algorithm is correct. For this, we first need

the following notion.

12Retrospectively, we found out that a similar idea has been studied by Atzmon et al. (2018) to compute an

approximation (within a given error bound) of the maxmin value of a game with perfect information.

120 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Algorithm 5: Alpha-beta duo search

1 def AlphaBetaDuo(node =, U, V):

2 if there is an entry for = in the cache:

3 (2, 2) ← Cache(=)
4 else:

5 (2, 2) ← (ℎ(=), ℎ(=))
6 if 2 = 2:

7 return (2, 2)

8 U← U ∨ 2
9 V← V ∧ 2

10 if = is an OR-node:

11 (E, E) ← (⊥,⊥)
12 else:

13 (E, E) ← (⊤,⊤)
14 determine the children =1, . . . , =1 of =

15 for 8 in {1, . . . , 1}:
16 if U ⪰ V:

17 if = is an OR-node:

18 E = 2

19 else:

20 E = 2

21 break

22 E′, E′ ← AlphaBetaDuo(=8 , U, V)

23 if = is an OR-node:

24 E ← E ∨ E′

25 E ← E ∨ E′

26 U← U ∨ E′

27 else:

28 E ← E ∧ E′

29 E ← E ∧ E′

30 V← V ∧ E′

31 E ← E ∨ 2
32 E ← E ∧ 2
33 store (E, E) in the cache under an entry for =

34 return (E, E)

Definition 6.4.5 (Coherent cache). A cache Cache is said to be coherent for � and +

if for all nodes = in �, if there is an entry for = in the cache, then Cache(=) = (2, 2)
where 2 ⪯ val(=) ⪯ 2, and in addition, if = is a leaf node, then 2(=) = 2(=) = val(=).

Obviously, an empty cache is coherent for all � and + .

In the following, we denote the pair of values returned by Algorithm 5 with input

=, U, V by (5 (=, U, V), 5 (=, U, V)). We first show that if the cache is initially coherent,

then it remains coherent after the execution, and that no interval stored in it can become

looser.

Proposition 6.4.6. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and + ,

6.4. ALPHA-BETA PRUNINGS UNDER PARTIAL ORDER 121

then for all nodes = in � and all U, V ∈ + , we have

5 (=, U, V) ⪯ val(=) ⪯ 5 (=, U, V). (6.10)

Moreover, if there is an entry (2, 2) in the cache for = before the call, then 2 ⪯ 5 (=, U, V)

and 5 (=, U, V) ⪯ 2.

Proof idea. 2 ⪯ 5 (=, U, V) and 5 (=, U, V) ⪯ 2 are direct consequence of Line 31 and

Line 32. As for inequality (6.10), it can be established by a structural induction. See

the appendix for the full proof. □

We can now prove results parallel to those in Subsection 6.4.3.

Proposition 6.4.7. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and + ,

then for all nodes = in � and all U, V ∈ + we have

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ 5 (=, U, V)

)
. (6.11)

Proof idea. This is also proved by a structural induction on =, with the help of Propo-

sition 6.4.6. See the appendix for the full proof. □

Corollary 6.4.8. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and

+ , then for all nodes = in � and all E, E ∈ + satisfying E ⪯ val(=) ⪯ E, we have

val(=) = E∧
(
E∨ 5 (=, E, E)

)
= E∧

(
E∨ 5 (=, E, E)

)
. In particular, val(=) = 5 (=,⊥,⊤) =

5 (=,⊥,⊤).

Proof. By Proposition 6.4.6, 5 (=, E, E) ⪯ val(=) ⪯ 5 (=, E, E). Using E∧
(
E∨val(=)

)
=

val(=), we get

E ∧
(
E ∨ 5 (=, E, E)

)
⪯ val(=) ⪯ E ∧

(
E ∨ 5 (=, E, E)

)
.

These inequalities are in fact equalities, since from Proposition 6.4.7 we have E ∧
(
E ∨

5 (=, E, E)
)
= E ∧

(
E ∨ 5 (=, E, E)

)
. □

6.4.6 Experiments

To assess the efficiency of alpha-beta duo (hereafter ‘ABD’), we ran experiments com-

paring it to three other algorithms:

• alpha-beta without cache (Algorithm 4, ‘AB’ for short);

• an alpha-beta search that only caches the value computed for a node if no cut is

found during the search in the subtree rooted at this node (hereafter ‘ABC’);

• a minimax search algorithm without alpha-beta pruning, but with a cache (here-

after ‘MMC’).

The code of ABD was slightly optimized by refining the values computed on Line 31

and Line 32 with the corresponding bounds of all fully explored children. It is easy to

show that this preserves the correctness of the algorithm.

For all experiments, we measured the number of nodes of the DAG visited at least

once, the total number of node visits (equivalently, the total number of recursive calls),

and the time taken for solving the problem. Intuitively, we expect ABD to be better than

122 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

ABC, ABC to be better than MMC (because MMC does not use alpha-beta pruning),

and MMC to be better than AB (because the latter does not cache its results and hence,

recomputes several times for the same node).

We used two synthetic sets of benchmarks. The first (hereafter ‘random’) consists

of random DAGs of the same kind as the one in Figure 6.1. Random DAGs with

parameters 3 (depth), 1 (branching factor), and E (number of variables) are generated

in the following manner:

• 3 layers 0, 1, . . . , 3 − 1 are built: layer 8 consists of 3min(8, 33
2
−8) nodes (which

yields diamond-shapes DAGs);

• from each node =, a set of 1 nodes is randomly chosen from nodes in the next

layer to be C(=);

• each internal node is labelled AND or OR at random;

• the value of each terminal node is a uniformly drawn subset of {1, . . . , E}, or

equivalently a random Boolean vector of length E.

We also consider strictly alternating DAGs, in which all nodes in layer 8 are OR-nodes

(respectively AND-nodes) if 8 is even (respectively odd). In particular, the root is an

OR-node.

The second set of benchmarks consists of a simplified version of the card game

Bridge that we call ‘racing’. There are two players, MIN and MAX. Each has a hand

of ℎ cards drawn uniformly from the deck {1, . . . , 3} where 3 ≥ 2ℎ. Players only see

their own hand. MIN begins the game. During each trick, the player who begins plays

a card from their hand, the other sees it and plays a card in turn. The player who played

the highest card wins this trick and starts the next one. No new card is ever drawn from

the deck. The game ends when the players have no more cards or when one has won in

total 6 tricks. MAX wins if they are the first one to reach 6 tricks. For the benchmark,

each instance with parameter ℎ, 3, and 6 consists of a randomly drawn hand with ℎ

cards for MAX and a randomly drawn card that is supposed to be played by MIN during

the first trick. Notice that when 3 > 2ℎ, each player has incomplete information. We

use evaluation of AND-OR DAGs to compute optimal strategies for MAX against the

best-defence model defined by Frank and Basin (1998) (cf. Subsection 5.4.1).

In games with incomplete information, in which (is the set of all possible hidden

configurations, Ginsberg’s algorithm with reduction makes use of the bounded distribu-

tive lattice (P(P(())↑,∪∗,⊓∗) (cf. Subsection 6.3.1) to compute uniform strategies.

One can also be interested in non-uniform strategies, which allow player MAX’s ac-

tions to depend on the hidden information. This can be useful for computing heuristic

values of for the game with incomplete information. It can be seen that the set of all

configurations for which there is a non-uniform winning strategy can be computed as

the value of the game DAG with the lattice (P((), ⊆,∩,∪) (cf. Subsection 6.5.2).

Hence, for both benchmarks, we consider the two lattices (P(P(())↑,∪∗,⊓∗) and

(P((),∩,∪). In ‘random’, (= {1, . . . , E}, while in ‘racing’ (is the set of all possible

hands of player MIN.

For space reasons, we only give the most representative results, in terms of compu-

tation time. For each parameter setting and each algorithm, we averaged over 10 runs.

Figure 6.5 shows two examples in which, as can be expected, it is more efficient to cache

bounds, even more to perform cuts, and still more to compute and store two bounds per

node. On the top plot, the gain of using ABD is exponential: with the branching factor

6.4. ALPHA-BETA PRUNINGS UNDER PARTIAL ORDER 123

increasing, ABD gets a better advantage of computing and caching two bounds. On

the bottom plot, ABC and AB (not represented) are exponentially worse, and ABD is

better than MMC when the branching factor is high.

Figure 6.5: Experimental results on random (top) and racing (bottom). Top: 3 = 15,

E = 10 (varying 1), alternating DAGs. Bottom: 3 = 20, 6 = 5 (varying ℎ). The lattice

is P(() in both cases.

Now Figure 6.6 shows two examples in which it turns out that it is not always better

to use alpha-beta pruning with cache.

On the top plot, not caching results at all turns out to be better: the overhead due

to the additional operators from the lattice P(P(())↑ (which are necessary to maintain

the cache) seems to compensate for the advantage of ABC or ABD in terms of number

of visited nodes and recursive calls (the curves are reversed for this metrics, not shown

here). On the bottom plot, it turns out that sometimes alpha-beta pruning even degrades

124 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Figure 6.6: Experimental results on random (top) and racing (bottom). Top: 3 = 15,

1 = 4 (varying E), alternating DAGs, lattice P(P(())↑. Bottom: ℎ = 7, 6 = 5 (varying

3), lattice P(().

performance. Again, this is due to the overhead of manipulating values from a large

lattice (for a fixed hand size, the lattice grows exponentially with the deck size).

To complete the discussions on these results, let us mention that in most experiments,

the numbers of nodes explored and visited by each method are ordered as expected,

with ratios varying from linear to exponential. In particular, for these metrics, ABD is

most of the time better, and often much better, than the other three algorithms.

Summarising, ABD seems to provide a real gain in (brute) performance for DAGs

with high branching factors. Contrastingly, when ∧ and ∨ from the lattice are too

expensive to compute (as is the case in some large lattices), it may sometimes be better

not to use cache and alpha-beta pruning together, due to the overhead to maintain the

6.5. OTHER TYPES OF GAME TREE PRUNING 125

coherence of the cache.

6.4.7 Conclusion

We investigated alpha-beta search for AND-OR DAGs with values from a lattice, which

has direct applications such as solving games with incomplete information. We have

extended previous formal analyses, in particular to the use of heuristic as initialisation

functions. Then we have proposed a new algorithm named ‘alpha-beta duo’, which

caches both a lower and an upper bound of the value of each visited node, and we have

formally proved its correctness. Experiments strongly suggest that it is more efficient

than other algorithms in terms of number of visited nodes and recursive calls. As for

time efficiency, the alpha-beta duo algorithm turns out to be more efficient than other

algorithms for DAGs with large branching factors and lattices of reasonable size. As

an interesting conclusion, our experiments also put forth that in other cases, it may be

better not to use alpha-beta pruning at all, due to the additional overhead of maintaining

a correctly reusable cache.

6.5 Other types of game tree pruning

In the last section, we have presented how to apply alpha-beta pruning to AND-OR

graph with partially ordered value. And we have observed that the value returned for

a node is the situational value of the node up to a factor of U and V. From another

perspective, U and V serve as a search window and an alpha-beta search only computes

a masked or projected situational value with respect to the window.

Occasionally, we may have information that can be used as an additional search

window to let the search focus only on the essential part of the situational values.

However, the value of U and V at each node are mechanically determined by Algorithm 4

and do not have the place to incorporate this sort of information. To remediate this,

we introduce a third variable W to represent this additional search window or mask on

the situational values. In this section, we will first present this extension of alpha-beta

search that we call alpha-beta-gamma search. We then discuss some instantiations of

this algorithm as optimisations for Ginsberg’s algorithm.

6.5.1 Alpha-beta-gamma search algorithm

Alpha-beta-gamma search under partial order is formalised in Algorithm 6. The only

difference between Algorithm 6 and Algorithm 4 is the addition of the variable W, the

value of which is in + and which is used to mask the initial value of a node, and the

gamma update function 6. The initial value of W and the gamma update function can

come from human advice (e.g. when a human expert wishes to guide the search to a

particular window they deem more pertinent), or some pre-analyses on the game tree

(cf. Subsection 6.5.2 and Subsection 6.5.4).

Remark. In Algorithm 6, we allow the gamma update function 6 to depend solely on

the node = at which we carry out the update, and on the current value of W. Naturally,

this is not the most general form of update; one can, for example, allow 6 to also depend

on the current value of U and V. However, as the dependency on = and W is sufficient

to formulate all game tree prunings we will present in the following, we adopt this

more restricted version of the gamma update function in Algorithm 6, and leave a more

general version of this function for future work.

126 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Algorithm 6: Alpha-beta-gamma search

1 def AlphaBetaGamma(node =, U, V, W):

2 W′ ← 6(=, W)
3 � = ℎ(=, U, V)
4 E ← W′ ∧ �
5 determine the successor nodes =1, . . . , =1 of =

6 for 8 in {1, . . . , 1}:
7 if = is an OR-node:

8 U← U ∨ E
9 else:

10 V← V ∧ E
11 if U ⪰ V:

12 break

13 Echild ← AlphaBetaGamma(=8 , U, V, W′)

14 if = is an OR-node:

15 E ← E ∨ Echild

16 else:

17 E ← E ∧ Echild

18 return E

Definition 6.5.1 (Admissible gamma update function). A gamma update function 6 is

said to be node-admissible for � and + if for all nodes = of �, it holds that

∀W ∈ +, 6(=, W) ⪰ val(=).

6 is said to be path-admissible for � and + if for all nodes = of �, it holds that

∀W ∈ +, W ⪰ 6(=, W) ⪰ W ∧ val(=).

6 is said to be admissible if it is either node-admissible or path-admissible.

Remark. The second notion of admissibility is called path-admissibility because it

allows 6(=, W), the updated value of W at node =, to depend on the current value of

W, which itself, due to the recursive nature of the algorithm, depends on the value of

W along the path which leads to the current node =. On the other hand, purely local

update functions, which depend solely on the current node but not on the current value

of W, can be cast into the node-admissible category.

This definition of admissibility is both motivated by game tree prunings we will

present in the following and by the proof of correctness of Algorithm 6. However, it is

only a sufficient admissibility for Algorithm 6 to be correct, not a necessary one. See

the remark after the proof of Proposition 6.5.2, which we state below, in the appendix.

We denote the value returned by Algorithm 6 with input =, U, V, W by 5 (=, U, V, W).
The correctness of Algorithm 6 will be a direct consequence of the following central

result, the proof of which is based on structural induction on = and can be found in the

appendix:

Proposition 6.5.2. If ℎ is an admissible heuristic function and 6 is an admissible

gamma update function for � and + , then for all nodes = of � and all U, V, W ∈ + , we

6.5. OTHER TYPES OF GAME TREE PRUNING 127

have

V ∧
(
U ∨ 5 (=, U, V, W)

)
= V ∧

(
U ∨

(
6(=, W) ∧ val(=)

))
, (6.12)

U ∨
(
V ∧ 5 (=, U, V, W)

)
= U ∨

(
V ∧

(
6(=, W) ∧ val(=)

))
. (6.13)

Remark. Notice that Proposition 6.5.2 is a generalisation of Proposition 6.4.2. Indeed,

taking 6(=, W) = ⊤ for all = and W, which is a node-admissible gamma update function,

Algorithm 6 reduces to Algorithm 4, while (6.12) reduces to (6.9).

Proposition 6.5.2 also highlights how gamma (and the gamma update function) and

the initialisation function differ in their effect: an admissible initialisation function does

not have any consequence on the returned values, while gamma projects the returned

value onto a window defined by the gamma update function.

Intuitively, Proposition 6.5.2 states that the value returned by Algorithm 6 coincides

with the exact situational value of = masked by W′ (i.e. 6(=, W) ∧ val(=)) up to a factor

of U and V. Now it follows that Algorithm 6 is correct in the following sense.

Corollary 6.5.3. If ℎ and 6 are admissible for � and + , then for all nodes = of �, we

have

• if 6 is node-admissible, val(=) = 5 (=,⊥,⊤, W);

• if 6 is path-admissible, W ∧ val(=) = 5 (=,⊥,⊤, W).

Proof. For W ∈ + , and all E
W
, EW ∈ + satisfying E

W
⪯ 6(=, W)∧val(=) ⪯ EW , by plugging

U = E
W

and V = EW into (6.12) and (6.13) we have

6(=, W) ∧ val(=) = EW ∧
(
E
W
∨ 5 (=, E

W
, EW , W)

)
= E

W
∨

(
EW ∧ 5 (=, EW , EW , W)

)
.

In particular, when E
W
= ⊥ and EW = ⊤ we have

6(=, W) ∧ val(=) = 5 (=,⊥,⊤, W).

If 6 is node-admissible, then 6(=, W) ∧ val(=) = val(=); if 6 is path-admissible, then

W ∧ val(=) ⪰ 6(=, W) ∧ val(=) ⪰ W ∧ val(=) ∧ val(=),

hence 6(=, W) ∧ val(=) = W ∧ val(=). □

Remark. Just as Proposition 6.5.2 generalises Proposition 6.4.2, Corollary 6.5.3

implies Corollary 6.4.3.

6.5.2 Prunings with winning supports under complete information

We now study a few instances of alpha-beta-gamma prunings that are inspired by human

players’ search and planning techniques in the gameplay of Bridge.

Until now, we have treated the situational values of internal nodes as abstract

elements from a bounded distributive lattice. However, they can contain exploitable

information if we look at them at a lower granularity.

In the following, we denote by val(=) the situational value of node = computed

by Ginsberg’s algorithm with reduction (i.e. MiniMax(P(P(*)), eval,∪∗,⊓∗) with

eval(;) = {∥ ®D(;)∥}13 for all leaf nodes ;) for a Boolean vector game. Recall that val(=)
is a family of the universe*, and each subset of* in it is the support of a non-dominated

local strategy of MAX at =.

13Recall that ∥ ®E ∥ ∈ P (*) is the subset of * corresponding to the binary vector ®E ∈ BC .

128 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Complete information vectors as gamma

Before introducing Ginsberg’s algorithm, we have presented a failed attempt to modify

the minimax algorithm, which can be written as MiniMax(P(*), eval,∪,∩), where

eval(;) = ∥ ®D(;)∥ for all leaf nodes ; ∈ L()). We will refer to this algorithm as the CI

algorithm.14 The CI algorithm does not correctly compute the pure maxmin of a vector

game due to strategy fusion. However, it does compute valuable information that we

can exploit for prunings.

Let us denote by CI(=) the situational value of = ∈ N()) computed by the CI

algorithm. Notice that this value, which is a subset of *, is computed by set union

and intersection (or equivalently, bit-wise maximum and minimum for binary vectors).

Hence, CI(=) is easily interpretable: if l ∈ CI(=), this means MAX could force a win

in this world starting at node =, if they had complete information.15 On the other hand,

ifl ∉ CI(=), this means MIN can force a win (i.e. a loss for MAX) in this world starting

at node =.

In the following, we refer to a strategy with which a MAX with complete informa-

tion could achieve the value CI(=) as MAX’s optimal local strategy under complete

information at =. We also refer to CI(=) as MAX’s winning support under complete

information at = and the vector corresponding to this set as the CI vector at =.

Take a look again at the vector game in Figure 5.9 (page 95). We have seen that

CI(A) = (1, 1, 0, 1, 1). It can be easily verified that under complete information, MAX

could indeed force a win in all worlds except the third one, by choosing the appropriate

action between l and r as a function of the real world. More concretely, MAX should

play l in the first two worlds and r in the last two. Notice that this optimal strategy

under complete information is actually not a legal strategy of MAX in the vector game

in Figure 5.9, in which MAX does have incomplete information and is forced to play

the same action in all 5 worlds. This explains the discrepancy between the CI vector

at A, which indicates a pure maxmin value of 4/5 if MAX had complete information,

and the situational value val(A), which shows that the pure maxmin value of the vector

game is only 2/5.

It is straightforward to show the following result by induction.

Lemma 6.5.4. Let = be a node and*′ ∈ val(=) be a support. Then*′ ⊆ CI(=).

Remark. This intuitively means no local strategy of MAX at = has larger support than

MAX’s optimal strategy under complete information at the same node.

Hence, the family {CI(=)} is an upper bound of val(=). In other words, val(=) ⪯
{CI(=)}, where ⪯ is the partial order from the lattice of reduced families used in

Ginsberg’s algorithm with reduction (cf. Subsection 6.3.1).

As a result, the gamma update function 6(=, W) = {CI(=)} is node-admissible,

therefore by Corollary 6.5.3, for all nodes = and all W ∈ + , 5 (=,⊥,⊤, W) (the value

returned by the alpha-beta-gamma algorithm starting at node = with this gamma update

function, ⊥ as the initial value of U, ⊤ as the initial value of V) is val(=).

Motivation of using CI vectors

Intuitively, the CI vector at = contains information about worlds in which MAX cannot

win against the best defence even under complete information; hence, it is a waste of

14“CI” stands for “complete information”.
15For a non-Boolean vector game, the 8-th component of the vector CI(=) is the best reward MAX can

guarantee if they had complete information.

6.5. OTHER TYPES OF GAME TREE PRUNING 129

time to compute the components of a local strategy at a node in the subtree rooted at =

that correspond to these losing worlds. Using CI vectors as gamma then has two effects

at a node = of MIN:

• CI(=) is used to mask the initialisation of the value at =, which is then used to

update the value of V; therefore, V becomes a sharper upper bound and potentially

provokes an earlier alpha-beta cut, thereby reducing the effective branching factor;

• CI(=) projects the computation of val(=) to the restricted universe * ∩ CI(=).
This makes the effective size of the universe smaller at this node16, especially

after an error from MAX or a killing move from MIN that makes MAX’s winning

support under complete information diminish largely.

r

)
A

1100) ′

B

1010 1001 0110 0101

Figure 6.7: A vector game with 4 worlds, where) and) ′ denote two unspecified

subtrees. Rewards vectors are written in a compact inline fashion.

Example. To illustrate the effects of using CI vectors as gamma, consider the vector

game in Figure 6.7. Suppose that CI(A) = 1100 (which can achieved by altering the

rewards in the subtrees) and) ′). In addition, suppose that both the initial V and the

initialisation � for the root are ⊤. Then before visiting the first child of A, E17 is given

{CI(A)} = {1100} as value, and V is also updated to be {1100}.

• At node �, a cut happens after visiting the first child; the whole tree) ′ is pruned.

• At node �, the value returned for child � is val(�) = {1010, 1001, 0110, 0101}
since there is no cut. Then at A , E is updated to be {1100}⊓val(�) = {1000, 0100}.
Notice how the differences between the vectors in val(�) in the components

corresponding to losing worlds in CI(A) are erased by the meet with CI(A): it is

as if we projected each returned value at A to the first two worlds. As a result,

the size of families involved is reduced, since incomparable vectors in * can be

comparable in the effective universe CI(A) ⊆ *. In this particular example, the

size of E after visiting child � is reduced from 4 to 2, which will also accelerate

the computation between the meet of E and the returned value from the subtree) .

Since the size of the universe and the branching factor are two main ingredients of

the combinatorial explosion in Ginsberg’s algorithm, CI vectors are important sources

of optimisation. What makes CI vectors even more interesting to consider is that the

computation of CI vectors for a CGII is linear-time, which means the time spent on CI

vectors will usually be dwarfed by the running time of Ginsberg’s algorithm itself.

Finally, it is also worth mentioning that the CI vectors at the children of a node can

be used as a heuristic for move ordering. For instance, at a MIN’s node, we may visit

16But not at all nodes in the subtree rooted at =; see discussions later in Subsection 6.5.4.
17E is the cumulative value at A for computing val(A) in Algorithm 6.

130 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

children with a CI vector of smaller cardinality first. The intuition is that these children

correspond to MIN’s best actions at this node when MAX has complete information;

hence they may very well also be MIN’s best actions when MAX only has incomplete

information.

6.5.3 Information-revealing CGIIs

Deduction about the real world

We have already discussed in Subsection 5.4.2 the fact that in general, in games with

incomplete information and public actions, MIN can have different available actions

depending on the real world l (or equivalently on their own type). For example, in

card/tile-based games such as Bridge or Mahjong, MIN cannot play a card/tile that is

not in their hand.

In such a game, MAX can deduce information about MIN’s type by observing

the action taken by MIN. For instance, in the game with incomplete information in

Figure 5.7 (page 92), if MAX observes that MIN takes action l, then MAX knows that

MIN cannot be of type � since a MIN of this type has no action l.

Back in Subsection 5.4.2, we have shown how to transform EFGs with one-sided

incomplete information and public actions such as the one in Figure 5.7 into a vector

game (cf. Figure 5.8) by vectorisation. The vector game obtained has reward vectors

with components in {0, 1, ∗}. Hence, by taking ∗ to be 1, we get a Boolean vector game

with the same maxmin value as the initial EFG. However, ∗ contains information about

worlds that are impossible with the observations leading to a node; we can exploit such

information to get more tree prunings.

We can formulate a notion of information-revealing CGIIs to encompass CGIIs in

which such kind of deduction about MIN’s type is possible for MAX. However, it does

not harm to generalise the notion a bit to include even more different CGIIs, which is

what we plan to achieve in the following paragraphs.

Incompatible belief state and revelation of information

Definition 6.5.5 (Incompatible belief state). Let � be a CGII. Let ∗ denote the largest

reward MAX can receive at any leaf and in any world.18 The incompatible belief state

(abbreviated as IBS in the following) for MAX at a node = ∈ N()) is defined to be

IBS(=) = {l ∈ * | MAX receives ∗ in l at all leaves reachable from =} ⊆ *.

Example. If we assume the total order 0 < 1 < ∗, then in the vector game in Figure 5.8

with universe * = {�, �, �}, we have IBS({�, �, �}) = ∅, IBS({�, �}) = {�} and

IBS({�,�}) = {�}.

Remark. Notice that in the previous example, the IBS at a node is the complement of

the name we give to the node itself. This is not a coincidence, since we have named the

nodes in Figure 5.8 with the belief state of MAX at each node.

If we define the belief state of MAX at a node BS(=) in the traditional sense (i.e. the

set of all worlds that are compatible with all the observations in the history), then in a

vector game obtained by vectorisation, IBS(=) and BS(=) always form a partition of

*, whence the name “incompatible belief state”.

18In particular, in a vector game, ∗ is the largest component of all reward vectors.

6.5. OTHER TYPES OF GAME TREE PRUNING 131

Although IBS is defined to capture the notion of incompatible worlds with ob-

servations, it is actually more general than that: it contains information about MIN’s

dominated actions. For example, in the vector game in Figure 6.8, we have ∗ = 1.

Notice that IBS(�) = {l1}, since MAX always receives 1 as reward in l1 if node �

is ever reached, no matter how MIN plays in the following. This shows that picking a

in l1 is a strictly dominated strategy for MIN. Hence, for the sake of computing the

maxmin value of this game, we may assume that MIN of typel1 never takes this action;

it is as if MIN has no action a in l1. Similarly, IBS(�) = {l3} since reaching � (by

picking b) in l3 leads to a guaranteed maximum reward for MAX.

A

a b

A

(
1
1
0

)l (
1
0
1

)r

B

(
1
0
1

)L (
0
1
1

)R

Figure 6.8: A vector game with a universe of 3 worlds.

In summary, the IBS at a node not only contains worlds that are incompatible with

past observations leading to this node, but also worlds in which MIN has no strict

incentive to take actions leading to this node.

Notice that the notion of IBS is well-defined for an arbitrary CGII and for both

MAX and MIN. In the following, however, we only focus on IBS for MAX in CGIIs

under the best-defence model, i.e. vector games. We will use the term information-

revealing CGIIs when we have vector games obtained by vectorisation (hence with 0,

1, and ∗, as possible rewards for MAX) in mind, since in such games actions of MIN

do reveal information about their hidden type. However, one should keep in mind that

optimisations for information-revealing CGIIs involving IBS are actually applicable to

all vector games due to the well-definedness of IBS for all vector games.

Computation of IBS

By definition of IBS, at an internal node =, for all children =′ of =, we have IBS(=) ⊆
IBS(=′). This is rather intuitive when we think about information-revealing game, since

MAX cannot have less information when they observe more.

In principle, for all nodes = in a vector game, IBS(=) can be computed in O(C |) |)
time, where C is the size of the universe, by finding ∗ first (which takes O(C |) |) time)

then verifying if in a world all leaves reachable from = yields ∗ for MAX (which takes

O(|) |) time for each world).

However, in practice, IBS(=) can be computed in a much more efficient way using

game rules. For example, observing MIN play a card rules out all worlds in which

they do not have this card. And IBS(=) can usually be computed incrementally: given

IBS(=) for a node = of MIN, for a child =′ of = reached by an action a of MIN, we may

compute IBS(=′) in O(C) time19 using IBS(=′) and a, thus saving a factor of O(|) |),
which is usually enormous.

19Or even better than linear time, if subsets of the universe are represented in a compact data structure that

is relatively easy to update, such as Boolean binary diagrams.

132 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

Combining CI and IBS in the alpha-beta-gamma algorithm

Just as CI vectors provide admissible initialisation for MIN’s nodes, IBS vectors provide

admissible initialisation for MAX’s nodes. Indeed, at a MAX’s node =, the vector that

has ∗ as components for worlds in IBS(=) and 0 as components for all other worlds is

a lower bound for the support of all MAX’s local strategies at =, for the simple reason

that a world in IBS(=) guarantees a reward of ∗ for MAX at all leaves reachable from =.

Therefore, by using CI and IBS together, we may have more or earlier alpha-beta cuts

in Algorithm 6; we will examine the nature of these cuts in the following paragraphs.

{�, �, �, �}

l r m

{�, �, �}

(
1
0
∗
1

)
{�,�, �}

(
∗
0
1
1

)
{�}

(
∗
∗
∗
0

)=1

)

m

(
0
1
∗
1

)
l/r

=2

(
∗
1
0
1

)
l/r

) ′

m

Figure 6.9: An information-revealing CGII, where) denotes an unspecified subtree in

which MIN of type � can force a loss for MAX and) ′ denotes another unspecified

subtree in which MAX can force a win.

Consider the vector game in Figure 6.9. There are 4 types of MIN, labelled by

{�, �, �, �}. In this game, only MIN of type � has action <; MIN of type � has no

action r; MIN of type � has no action l.

To facilitate the visualisation of this game, we name the nodes in the first two layers

by the belief state of MAX at these nodes. For instance, if the node labelled by {�} is

reached, then the belief state of MAX is {�} since only MIN of type � has action m;

equivalently, IBS({�}) = {�, �, �}.

Let us assume 1 < ∗ for the computation of CI vectors. Then the right child of =1

(i.e. the root of) , denoted by A ())) has (∗, ∗, ∗, 0) as its CI vector; CI(=1) = (0, 1, ∗, 0),
which means that starting from node =1, if MIN is of type �, MAX under complete

information can force a win; if MIN is of type � or �, MIN can force a loss for MAX

starting from =1. If MIN is of type �, then =1 is actually not reachable since MIN of

type � has no action l, hence the ∗ in CI(=1). In set representation, the CI vector at =1

reads {�,�}. On the other hand, IBS(=1) = {�}, and IBS(A ())) = {�, �, �}.

Now, suppose that Algorithm 6 traverses the nodes of the same layer from left to

right, hence visits the left child first at =1. Then at A ()), the value of beta is inherited

from the value of beta at =1 after being updated by CI(=1), hence is at most {�,�};
the value of U is the value of U from the parent of =1 updated by IBS(A ())), hence is

at least {�, �, �}. As a result, an alpha-beta cut happens and the whole tree of) is

pruned.

CI action pruning

What is the intuition behind the cut above? Well, IBS(A ())) tells us that MIN of types

�, �, and � have no incentive to pick actions leading to the node A ()); CI(=1) tells us

6.5. OTHER TYPES OF GAME TREE PRUNING 133

that the only type not in IBS(A ())), i.e. type �, can force a loss for MAX. Intuitively, the

cut at A ()) is equivalent to saying that at =1, it is unnecessary to consider the possibility

that MIN takes action m, since all types of MIN that have incentive to take this action

(� in our case) can force a loss for MAX; this latter fact has already been taken into

account by initialising the value of =1 with CI(=1), hence the tree following action m

can be safely pruned without affecting the computation of the maxmin value.

More generally, at a node = of MIN in an information-revealing CGII, one can safely

skip all MIN’s actions that are only available (dictated by the IBS vector at a child of =,

which contains all types of MIN that cannot reach this child since the action leading to

this child is not available to MIN of those types) in worlds in which MAX cannot win

even under complete information (dictated by CI(=)). We call this particular type of

game tree pruning, which is automated by using CI and ISB together in Algorithm 6,

CI action pruning. The soundness of this pruning is guaranteed by the correctness of

Algorithm 6 (cf. Proposition 6.5.2) and the fact that CI vectors are admissible gammas

while IBS vectors form an admissible heuristic function.

This pruning is particularly useful for real-life games with incomplete information

in which MIN’s available actions largely depend on their type (e.g. card games such as

Bridge); for these games, it can effectively reduce the branching factor at MIN’s nodes.

6.5.4 Prunings with path winning supports

Motivation

Notice that CI action pruning is especially efficient at nodes where MAX only has a

slime chance of winning (i.e. when the size of the winning support under complete

information is small compared to the size of the universe), which is typically the case

after MAX commits some errors. Hence, generally speaking, CI action pruning makes

the search algorithm spend less time in computing the situational values in subtrees

following MAX’s bad moves, and focus on other (more promising) subtrees, thereby

improving its performance. What about MIN’s bad moves? Can we also accelerate the

tree search after some errors from MIN? This is the subject of the current subsection.

Keen readers may have noticed that in the CGII in Figure 6.9, at the root MIN of

type � can force a loss for MAX by playing m to end the game immediately, which

means � ∉ CI(A), where A is the root, which implies that � is not in any vector from

val(A).20

Therefore, we may wish to assume that if MIN has not played m at the root, then

they are not of type �; after all, we know that the exact value for the component

corresponding to type � in supports for MAX’s local strategies is inessential for

computing the maxmin value. This assumption allows the algorithm to search with a

smaller effective universe at all subtrees and to prune more branches. For example, the

subtree) ′ following branch m from node =2 should be pruned since MIN could not be

of type � at =2 and MIN of the other types has no action m.

However, this pruning is not encompassed by CI action pruning. For instance,

� ∈ CI(=2), hence the action m at =2 will not be pruned by the algorithm. The main

reason behind this is that CI vectors are purely local objects (i.e. the CI of a node

20Recall from Lemma 6.5.4 that the CI vector at a node dominates all vectors in the situational values

of the same node (i.e. val(=) ⪯ {CI(=) }). Another way to understand this result in our example is the

following: at the root, the algorithm computes (during the computation of ⊓) the bit-wise minimum between

the support (∗, ∗, ∗, 0) from the branch m and supports for MAX’s local strategies backed up from other

subtrees, thereby causing the component corresponding to type � in all resulting supports to be 0.

134 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

depends solely on the subtree rooted at this node): CI(=2) contains no information

about the fact that � is actually not in CI(A).
From another perspective, after MIN’s bad moves (e.g. MIN of type � plays r at

the root, which is an error since there is now a strategy for MAX to force a win against

MIN of type �), the CI vector actually contains more worlds since MAX can now win

under complete information against more types (in the example above, type �); the

search algorithm then spends more time than necessary by adding back some types to

the effective universe at a node =, although MIN of these types can force a loss for

MAX at nodes that are ancestors of =.

PWS and its properties

To fix this undesirable behaviour of CI action pruning, we introduce a non-local version

of CI that can remember information from the past about types of MIN that can force a

loss for MAX.

Definition 6.5.6 (Path winning support). The path winning support (for MAX under

complete information) is defined recursively in a top-down manner by PWS(A) = CI(A)
and PWS(=) = PWS(=′) ∩ CI(=), where =′ is the parent of =.

In the following, we refer to PWS(=), the path winning support at a node =, as the

PWS vector at =.

Example. In the CGII in Figure 6.9, we have CI(A) = {�, �, �}, CI({�,�, �}) =
{�, �, �, �}, and CI(=2) = {�, �, �}. Hence,

PWS(A) = CI(A) = {�, �, �},

PWS({�,�, �}) = PWS(A) ∩ CI({�,�, �}) = {�, �, �},

PWS(=2) = PWS({�,�, �}) ∩ CI(=2) = {�, �}.

Notice that � ∉ PWS(=2) as � is not in the PWS vector at the root, an ancestor of =2.

It is clear that the PWS is always a subset of CI.

Lemma 6.5.7. For all =, PWS(=) ⊆ CI(=).

In addition, PWS is decreasingly monotone in terms of inclusion along all paths of

the game tree starting from the root.

Lemma 6.5.8. Let = be an internal node and =′ be a child of =. Then PWS(=′) ⊆
PWS(=). Moreover, PWS(=) = PWS(=′) if = is a node of MIN.

Proof. PWS(=′) ⊆ PWS(=) follows directly from the definition. If = is a node of MIN,

then CI(=) ⊆ CI(=′) since CI(=) is defined as the intersection of the CI vectors at

all the children of =. Hence, PWS(=) ⊆ CI(=′) and PWS(=′) = PWS(=) ∩ CI(=′) =
PWS(=). □

Remark. The fact that a node of MIN and all its children have the same PWS vector

shows again the non-locality of PWS: each child of a node of MIN has access to some

information from its siblings via this common PWS vector.

Since val(=) ⪯ {CI(=)} for all nodes =, we know that 6(=, W) = W ⊓ {CI(=)}
is a path-admissible gamma update function. In particular, 6(=, W) = {PWS(=)} is

path-admissible, which is equivalent to using the previous gamma update function in

6.5. OTHER TYPES OF GAME TREE PRUNING 135

Algorithm 6 with W = ⊤ as the initial gamma. Therefore, PWS vectors can be used

as gamma in Algorithm 6. Concretely, by Corollary 6.5.3, 5 (A,⊥,⊤,⊤) (the value

returned by the alpha-beta-gamma algorithm with this gamma update function, ⊥ as

the initial value of alpha, ⊤ as the initial value of beta and gamma) is val(A).

PWS prunings

Just as CI vectors, PWS vectors are computable in linear time and can also be used as

heuristics for move ordering. We now have a look at how PWS vectors produce more

alpha-beta cuts.

Let us write 6CI (=, W) ≔ CI(=) and 6PWS (=, W) ≔ W ⊓ {CI(=)} for the gamma

update function corresponding to using CI vectors and PWS vectors, respectively, as

gamma in Algorithm 6.

Recall that using 6CI in Algorithm 6 has three effects at a node = of MIN:

1. CI(=) is used to make V sharper to trigger an alpha-beta cut earlier;

2. CI(=) is used to reduce the effective size of the universe at =;

3. CI(=), with U at the children of = updated by their IBS vectors, creates CI action

pruning, i.e. pruning of branches corresponding to actions that are only available

to types against which MAX cannot win.

We refer to all these effects brought by using 6CI (and IBS vectors as heuristic

function for initialisation of MAX’s nodes) as CI prunings. We will examine one by

one how using 6PWS instead of 6CI affects these prunings.

Effect 1 Since PWS(=) ⊆ CI(=) (cf. Lemma 6.5.7), it is clear that using 6PWS produces

no fewer nor later alpha-beta cuts than using 6CI.

Effect 2 Using 6PWS reduces the effective size of the universe not only at a node = of

MIN, but at all nodes (including those of MAX) in the subtree rooted at =. This is a

direct consequence of the monotonicity of PWS vectors (cf. Lemma 6.5.8). Indeed, all

the initial values of the nodes in the subtree rooted at = are masked by a gamma that is

no larger (in terms of ⪯) than {PWS(=)}. In particular, this is also true at the leaves in

this subtree; hence the value returned for these leaves is also masked by a gamma no

larger than {PWS(=)}.
As a result, the search algorithm has PWS(=) ⊆ * as its effective universe in this

subtree instead of the whole *, which means PWS is even more efficient than CI in

reducing search time in branches after MAX’s errors or MIN’s good moves.

Effect 3 PWS action pruning is also more efficient than CI action pruning, since

PWS(=) ⊆ CI(=) for all nodes =.

For the last point, take a look again at the example in Figure 6.9. CI action pruning

correctly prunes) by ignoring action m at =1, but it does not prune the subtree) ′. On

the other hand, PWS action pruning correctly prunes both) and) ′. To verify that) ′

is indeed pruned, notice that PWS(=2) = {�, �} while the IBS vector at the root of) ′

reads IBS(A () ′)) = {�, �, �}; an alpha-beta cut is then triggered at the beginning of

the search at A () ′).
We refer to all these prunings as PWS prunings. We have observed that PWS

prunings are a net improvement over CI prunings: not only do PWS prunings accelerate

136 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

the game tree search after MAX’s bad moves or MIN’s good moves by considering a

smaller effective universe, they also do not have the illusion that MAX can win against

certain types of MIN at the root after seeing bad moves from these types of MIN (e.g.

type � in previous examples).

In short, PWS offers better guidance for game tree search by taking advantage of a

pre-analysis (the computation of CI and PWS vectors at each node) that takes practically

negligible time compared to the tree search itself (linear time vs. NP-hard) in order

to, when searching in some part of the game tree, incorporate non-local information

about other parts of the tree, thereby combatting the effects of non-locality (notably the

combinatorial explosion).

As we have mentioned before at the beginning of Subsection 6.5.2, CI and PWS

prunings are inspired by human Bridge players. For example, if a player finds out

that they cannot possibly win if certain hidden cards are not in a certain hand (of their

opponent or partner), then they will assume that these hidden cards are indeed in the

right hand for their win to be possible, and continue their offline planning based on

this assumption.21 This amounts to using CI(A) as the effective universe at every node

= ∈ N()), which is the case when 6PWS
22 is used in the alpha-beta-gamma algorithm.

And ideas similar to PWS vectors (i.e. not adding losing worlds at an ancestor node back

to the effective universe after MIN’s bad moves) are also used to avoid pitfalls caused

by non-locality. For a Bridge deal with non-locality that can be avoided by using PWS

prunings, see Deal 1 (page 168) in Appendix A.4.1.

Caveat of using PWS: cache problem

However, there is a price to pay for the enhanced performance brought by PWS prunings:

they are not naturally compatible with caching as CI prunings do. Concretely, if the

game we consider has a DAG instead of a tree, then the PWS vector at a node depends

on which path we take to arrive at this node.

�

� �

0000111
�

1100000 0011000

�

1111111

Figure 6.10: A vector game as a DAG with 7 worlds, where rewards vectors are written

in a compact inline fashion.

Consider the game in Figure 6.10. In this game, the CI vectors are CI(�) =

CI(�) = 1111111, CI(�) = 0000111, and CI(�) = CI(�) = 1111000. Let us examine

the execution of the alpha-beta-gamma algorithm with 6PWS, U = ⊥, V = W = ⊤, and

trivial initialisation.

21This search technique is called hypothèse de nécéssité (hypothesis of necessity) in the French literature

on Bridge.
22Note that we are really referencing 6PWS here instead of 6CI: if 6CI is used, then the effective universe

is reduced to CI(A) only at A , not at every node.

6.6. CONCLUSION 137

Suppose that the game tree search algorithm explores the child � of node � first.23

At vertex � , the PWS vector reads PWS(�) = CI(�) ∩ CI(�) ∩ CI(�) = 1111000.

Hence, the game tree search algorithm returns {1111111} ⊓ {PWS(�)} = {1111000}
as the value of � , which is then used to compute the value returned for �, which is

{1100000, 0011000}.

If the result {1111000} is directly cached for node � , then when the game tree

search algorithm descends again at � via the path � − � − � , it will take 1111000 as

the value of � . As a result, the value of � is computed to be {1111000} ⊓ {0000111} =
{0000000}. Therefore, the algorithm erroneously concludes that the value of the root

is {1100000, 0011000, 0000000} and the maxmin value of the game is 2. Indeed, this

result is not correct as the third vector in the situational value of the root (i.e. the one

corresponding to taking the action leading to � at the root) is actually 0000111 and the

maxmin value is in fact 3.

The origin of this problem is, as we have stated before, that the PWS vector at a

node in a DAG depends on which path we take. In the example above, there are two

paths leading to � , the first one � − � − � with PWS vector 1111000 and the second

one � − � − � with PWS vector 0000111. One can see that these two PWS vectors

are incomparable (with set inclusion as the partial order). The first PWS only deems

the first 4 worlds to be useful for computing the situational value of the ancestors of �

(along the path � − � − �). Hence, the value of � computed when following the path

� − � − � , which is the projection of val(�) over the first 4 worlds, offers no useful

information for the path � − � − � , for which the PWS vector deems only the last 3

worlds to be useful.

Notice that CI vectors do not suffer from this problem, since they are local and

depend solely on the subtree rooted at a node; they are naturally compatible with

caching schemes.

A naı̈ve attempt to fix this cache problem by recording the PWS vectors we use to

compute the value at a node in the cache does not work, since there are examples of

vector games with a DAG which have an exponential (in the number of MIN’s types)

number of incomparable PWS vectors at some nodes. At the moment of writing, it

is still an open question how to design a caching scheme for the alpha-beta-gamma

algorithm that is compatible with PWS vectors without the need to store every PWS

vector at a node.

6.6 Conclusion

In this chapter, we have presented different exact optimisations for Ginsberg’s algorithm

from two categories: strategy pruning and game tree pruning. Strategy pruning reduces

the size of families involved in the computation of situational values; a notable example

is elimination of dominated strategies. Game tree pruning reduces the effective branch-

ing factor, and in some cases also reduces the effective size of the universe (e.g. PWS

prunings).

Prospectives

There are many possible ways to pursue the study in this chapter. For instance:

23Notice that if move ordering is carried out using CI vectors as heuristics, then at � child � will be chosen

first since |CI(�) | > |CI(�) |.

138 CHAPTER 6. OPTIMISATIONS FOR GINSBERG’S ALGORITHM

• design a caching scheme that can make full use of PWS prunings;

• conduct experiments on a better constructed benchmark to compare the effects

of different exact optimisations;

• investigate non-exact optimisations for Ginsberg’s algorithm (e.g. techniques such

as Monte Carlo tree search);

• consider using appropriate data structures (e.g. Epistemic Splitting Diagrams

from Niveau and Zanuttini (2016)) to accelerate the computation of the operators

from the family algebra (union, meet, maximal elements, etc.).

Chapter 7

Opponent models and recursive

reasoning

7.1 Introduction

In this chapter, we first take a look again at the best-defence model, under which we

have developed many algorithmic ideas (cf. Chapter 6). In some cases, the best-defence

model is well justified, either because MIN has complete information, or MIN does

not have too much incomplete information (i.e. the equivalence classes of MIN do not

contain too many worlds).

For example, in the game of Bridge, MIN typically has far less incomplete informa-

tion than MAX, since MAX often reveals information about their hidden hand during

the bidding phase to become declarer. Hence, human Bridge players typically find

their first robust plan for gameplay in an offline fashion (i.e. before playing their first

card) under the best-defence model. Actually, the fact that this model is widely used

by Bridge experts is the initial motivation for Frank and Basin (1998) to formalise this

model.

However, in Section 7.2, we show some examples in which the best-defence model

is not appropriate. We then have an informal brainstorming to discuss ideas that allow

us to go beyond the best-defence model while squeezing out the last drop of what it can

offer to use.

In Section 7.3, we thoroughly explore one of the ideas discussed in Section 7.2:

opponent-model search applied to CGIIs under the best-defence model. Such search

allows taking into account the possibility that the behaviour of MIN is not completely

nondeterministic, and that MIN’s reasoning can be simulated by MAX.

Then in Section 7.4, which concerns the idea of recursive opponent modelling, we

give a general framework of such modelling, which encompasses many instances of

recursive modelling in the literature. We then show how such modelling can be applied

to CGIIs under the best-defence model using the OM search algorithms presented in

Section 7.3. Such a combination (recursive modelling with OM search under the best-

defence model) captures nicely how expert Bridge players go beyond the best-defence

model in their planning for card play; we show an example to illustrate this point to

conclude this section.

The content in this chapter is still a work in progress. As a consequence, this

chapter is less well-shaped than the previous chapters. We are still ruminating on how

139

140 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

to formalise the ideas and formalisms we touch upon in this chapter and to apply them

to a broader field; ironing them out is one of the priorities of our future work.

7.2 Beyond the best-defence model

We have studied thoroughly algorithms for CGIIs under the best-defence model (Chap-

ter 5) and optimisations for these algorithms (Chapter 6). However, contrary to what

the best-defence model assumes, MIN does not have complete information in general.

In such situations, the best-defence model gives too much power to MIN, by adding

pure strategies that they can implement only when they have complete information.

(1 0)

a

(0 1)

b
c

(100 0)

l

(0 100)

r

Figure 7.1: A CGII with two types of MAX and one type of MIN.

Example. For example, consider the CGII in Figure 7.1, in which there are two types

of MAX but one type of MIN; in other words, MAX has complete information while

MIN only has single-agent incomplete information. Hence, the rewards are written

horizontally, in contrast with rewards in vector games. With the uniform prior over

MAX’s types, one can verify that the (pure or behaviour) maxmin value for MAX of the

game is 50, which is achieved by playing action c.

However, the maxmin value for each type of player MAX under the best-defence

model is 1, which is obtained by playing a for the first type and playing b for the second

type. The reason behind this is that under the best-defence model, MAX of the first

type assumes that MIN knows their type and will play r to give MAX a payoff of 0 if

MAX plays c; MAX of the first type therefore prefers (in the maxmin/security/robustness

sense) playing a, which guarantees a payoff of 1. And a similar reasoning leads MAX

of the second type to prefer b.

The discrepancy between the two values (1 and 50) is due to the fact that MIN

actually cannot pick between l and r according to MAX’s actual type. This clearly

motivates us to go beyond the best-defence model; the question now is “how”.

Rigorously speaking, the best-defence model has two assumptions:

1. It assumes that MIN has complete information in a game.

2. It assumes that MIN may use any of their strategies that are legal under complete

information.

In our previous work in Chapter 5 and Chapter 6, the first assumption is taken into

account by considering only vector games, while the second one is taken into account

by focusing on computing maxmin values against all pure strategies of MIN.

7.2. BEYOND THE BEST-DEFENCE MODEL 141

Behaviour maxmin

Let us first mention one obvious option that allows us to get rid of the best-defence

model in some cases: consider behaviour maxmin instead of pure maxmin as solution

concept.

Indeed, recall that Pure Maxmin is NP-hard for CGIIs in which at least one team

has incomplete information (Table 5.1, page 74), while Behaviour Maxmin is in P

for EFGs with perfect recall (Table 4.5, page 64), hence a fortiori for CGIIs in which

both teams have incomplete information. In addition, allowing MAX to use behaviour

strategies guarantees better payoffs, which seems to be the cherry on the cake.

However, this line of reasoning is a bit misleading; switching to behaviour maxmin

is akin to burying one’s head in the sand for the following reasons.

• When MAX has multi-agent incomplete information / multi-agent perfect recall,

the complexity of Pure Maxmin and the one of Behaviour Maxmin is the same

(compare Table 4.1 and Table 5.1 to Table 4.5). Indeed, if MAX is multi-agent

while MIN is single-agent, then both decision problems are NP-hard; if both

teams are multi-agent, then both problems are ΣP
2
-hard. Hence, switching to

behaviour maxmin does not seem so promising when we tackle team games.

• Sometimes we are forced to adopt pure strategies for MAX. It can be because

pure strategies are desirable for their deterministic nature or for MAX’s lack of

sources of randomness. But the strongest argument comes from the need to model

human players, who have been experimentally shown to be inclined to reason in

terms of pure strategies rather than mixed or behaviour strategies (Dhami, 2019,

Chapter 1). If the MAX in consideration is a human player, and we wish to

simulate their reasoning (in order to collaborate with them or defeat them), then

again we have to resort to algorithms for finding optimal pure strategies.

Opponent model

To go beyond the best-defence model, we first turn to the concept of opponent models,

a general discussion on which can be found in Section 2.5. For various reasons, MAX

needs not assume that MIN may use any of their pure strategies as in the best-defence

model (i.e. assumption 2), in particular if MAX has a model of MIN’s behaviour or

reasoning so that they can partially predict what MIN would do in a game.

We list below a few of these reasons for taking an opponent model into account,

which are by no means comprehensive.

• MIN is a player with limited computational resources.

• MIN is not a rational player (which is often the case for human players).

• MIN is rational but has a different utility function than prescribed by the game

(e.g. when the payoffs are measured in money, but MIN’s subjective reward is an

unknown and non-linear function of the amount of money they receive).

• MAX has past experience of playing against MIN, hence has accumulated knowl-

edge about MIN’s playing style (e.g. Federer vs. Nadal in their head-to-head

matches).

• MAX is somehow aware of how MIN reasons (e.g. teachers are aware of usual

mistakes that students would make in some subjects, since they partly understand

the thinking process of their students when facing new material).

142 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

• When MIN is multi-agent, the coordination between agents of MIN may be

common knowledge due to game rules.

0
0 1

+

H0 T0

+

H1 T1

+

h t

+

h′ t′

+

h t

+

h′ t′

Figure 7.2: Matching Pennies with multi-agent incomplete information for MAX, with

rewards omitted.

Example. Let us illustrate the last point with the CGII (represented by its corresponding

EFG of chance) in Figure 7.2. In this game, there are two agents (1 and 2) of MAX:

MAX 1 has complete information (and can pick between heads and tails according

to the bit chosen by Nature), while MAX 2 has incomplete information (and can pick

between heads and tails according to the choice of MAX 1 but not to the bit chosen by

Nature).

Suppose that the rewards are such that the agents of MAX must pick the same face

when Nature chooses 0, and different faces when Nature chooses 1. Then one can verify

that the pure (but also behaviour) maxmin strategies are the following: MAX 1 uses

their action to tell MAX 2 what Nature’s choice is, so that MAX 2 can pick the right

face accordingly. For example, MAX 1 plays heads H0 and tails T1 in world 0 and 1,

respectively, and MAX 2 plays h when MAX 1 plays heads (the same face as MAX 1

since they are in world 0) and h′ when MAX 1 plays tails (different face from MAX 1

since they are in world 1).

During the card play phase of Bridge, two agents of MIN have to transmit informa-

tion about their own hand to each other so as to play the right strategy to defeat MAX.

The situation is very similar to the example above: one agent of MIN encodes some

information into the card that they choose to play so that another agent of MIN can

choose the right strategy accordingly. Such a way to encode and transmit information is

referred to as signalling. However, in the rules of competition of Bridge, all conventions

must be common knowledge, including signalling conventions between every pair of

players. Hence, when MAX sees MIN 1 play a certain card, in principle they would be

able to deduce the same information as MIN 2. An example of from Bridge is given by

Deal 2 (page 168) in Appendix A.4.1.

To automate this kind of reasoning and deduction based on knowledge about MIN’s

conventions, we again need to take opponent models into account.

Remark. It is now clear that for some of these situations, the validity of not only the

best-defence model but also the maxmin value (regardless of pure or behaviour) itself is

questioned. For example, pure maxmin as a solution concept in a zero-sum EFG with

perfect information is equivalent to assuming common belief in future rationality (cf.

Perea (2012, Chapter 8)), which in particular implies that MIN is not just rational but

in fact infinitely rational; this assumption does not hold in many cases evoked above.

7.2. BEYOND THE BEST-DEFENCE MODEL 143

Recursive opponent modelling

We have already argued that opponent models are important resources to get rid of

assumption 2 of the best-defence model. Now we have a brief look at one idea inspired

again by human gameplay in Bridge about how to circumvent assumption 1.

Take a look again at the game in Figure 7.1. Pure maxmin under the best-defence

model overestimates MIN’s power at their decision node by assuming that they can

pick between l and r according to MAX’s type. To partially solve this problem, human

Bridge players employ a recursive opponent modelling.

Informally, according to this model, each player at level-0 reasons under the best-

defence model for their own type. Then, a player at level-1 assumes that their opponent

plays their level-0 strategy. For example, in the game in Figure 7.1, MAX at level-1

computes the maxmin strategies under the best-defence model for MIN at level-0. By

doing so, MAX realises that MIN is actually indifferent between the actions l and r. If

MAX assumes the strategy played by MIN at level-0 will be uniformly random between

these two actions,1 which is a rather reasonable assumption (Camerer et al., 2004).

Therefore, MAX at level-1 now prefers action c.

This type of iteration can go on forever, but usually human players only reason

recursively at a depth of 2 or 3 (Dhami, 2019). Indeed, near the end of this dissertation,

we will study a simplified version of a real Bridge deal involving a recursive reasoning

at level-3 (Figure 7.4); such deals are extremely rare even in Bridge championships,

which corroborates the fact that human players have a very limited depth for recursive

reasoning.

Notice that such recursive reasoning is a form of reasoning about opponent’s strate-

gies: if MIN plays B− , this means that at a certain level B− is optimal with respect

to MIN’s private information, from which MAX can deduce something about MIN’s

private information. Of course, this type of reasoning has no guarantee of soundness

or robustness; MAX can very well make a wrong assumption about MIN’s level or

tie-breaking between indifferent strategies, which may have catastrophic consequences.

The idea of recursive opponent modelling is by itself very attractive, especially

because it captures human strategic choices, which makes it particularly useful for

designing AI systems that collaborate with or compete against humans.

In addition, recursive opponent modelling is also interesting from a complexity-

theoretic perspective. If the real world is l, then when each player reasons at level-1

under the best-defence model, it is as if they played in a CGII with the universe restricted

to worlds that are indistinguishable by them from l. At level-2, MAX, for example,

considers MIN’s reasoning in every world l′ that is indistinguishable from l by MAX.

To this end, MAX has to imagine what MIN imagines (at level-1, hence under the

best-defence model) that MAX will do in worlds l′′ that are indistinguishable from

l′ by MIN. One can see where this is going: at level-: , a player has to consider

all worlds reachable from l within : alternations of the equivalence relations in the

Aumann model of the CGII. Therefore, in CGII with large and complicated Aumann

model but very local equivalence relations (i.e. only worlds that are really close are

1We emphasise that this is not conceptually equivalent to assuming that MIN plays a mixed strategy at

level-0. In fact, the assumption is rather to assume that there are players in the position of MIN at level-0

who, for whatever reason, pick l; and there are also players who pick r. Since MIN at level-0 is indifferent

between these two actions, there are intuitively the same number of people who pick l as of those who pick

r. This perspective, coming from epistemic game theory (cf. Perea (2012)), provides a new interpretation

of mixed strategies: it is not a fixed player who randomises between strategies, but a population of players

having different preferences over the strategies; since we have no idea of the exact preference of a particular

opponent, it is as if they would pick strategies randomly.

144 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

indistinguishable by players), then : such alternations only cover a small part of the

whole universe.

In particular, we can see that the idea of recursive opponent modelling is a general-

isation of the best-defence model. We leave the formal definition of recursive opponent

modelling, its properties in terms of the Aumann model in consideration, and its logical

foundation to future work.

7.3 Opponent-model search in vector games

The content in this and the following section is to be published in AAAI 2024 (Li et al.,

2024).

7.3.1 Introduction

Opponent models are models that describe or predict how an opponent reasons or

behaves in a game. Such models have been explicitly incorporated into game tree

search algorithms (e.g. minimax, UV search, MCTS) for games with perfect information

(Iida et al., 1993, 1994; Sturtevant and Bowling, 2006; Sturtevant et al., 2006) to find

robust strategies against a given opponent model, i.e. strategies that guarantee a given

payoff against any strategy deemed possible by the opponent model. The knowledge

of opponent models can accelerate the game tree search (e.g. by pruning branches not

considered by an opponent) and improve the performance of the strategies obtained

(e.g. by exploiting the weakness of an opponent).

In this section, we extend the idea of opponent-model search to (two-player, zero-

sum) games with incomplete information. We first propose different ways of taking

opponent models into (which is of interest beyond the setting of incomplete information),

and give algorithms for computing the corresponding robust strategies for such games.

We then propose a principled method for taking into account a probability that the

opponent does not behave according to any of the given models. Finally, we show an

application of these models to the recursive modelling of opponents, where a level-:

player assumes that their opponent reasons at some level lower than : , and recursively

down to level 0.

7.3.2 Problem setting

Throughout this section, we focus on zero-sum vector games, i.e. two-player zero-

sum CGIIs with one-sided incomplete information;2 such a CGII will be denoted by

� = ⟨), P, C, ®D, ®d⟩ (Definition 5.4.1, page 91).

Recap on maxmin value without OM

We first quickly recap the computation of maxmin value without OM so that we can

contrast it with the computation of maxmin value with OM.

2Our study can be easily extended to more players and general-sum, with the exception of the lexicographic

setting, for which the definition of opponent models does not trivially generalise.

7.3. OPPONENT-MODEL SEARCH IN VECTOR GAMES 145

Pure maxmin We already know that the pure maxmin value of a vector game is NP-

hard to compute (cf. Proposition 5.3.3, page 76); Ginsberg’s algorithm (e.g. without

reduction: MiniMax(P<∞ (R
C), eval,∪,⊓)) allows us to compute this value in the sense

of Proposition 5.4.2 (page 97).

Example. In the vector game in Figure 5.6 (page 92), the pure maxmin value is 2
5

and

is achieved by two pure strategies: (l, L) and (r,R).

Mixed maxmin Contrary to pure maxmin, the mixed maxmin value can be computed

in polynomial time with the linear-programming algorithm proposed by Koller and

Megiddo (1992, Chapter 3).

In short, this algorithm relies on two insights. First, the set of all mixed strategies of

MAX can be represented in sequence form, i.e. by a system ! of linear equalities, with

linearly many (in the size of the game tree) variables and equalities. Second, for every

threshold E and every mixed strategy f+ of MAX represented as a solution to !, it can

be verified in linear time whether minB−∈ΣP
−
U(f+, B−) ≥ E holds by computing MIN’s

best responses to f+. This computation serves as a separation oracle, under which a

linear program (LP) maximising E with respect to the constraints in ! computes the

mixed maxmin.

Example. In the vector game in Figure 5.6 (page 92), the optimal mixed strategy for

MAX is the uniform strategy, i.e. a uniform distribution over all 4 pure strategies of

MAX. This strategy yields an expected payoff of at least 1
2
, which is the mixed maxmin

value and is better than the pure maxmin value 2
5
.

The above algorithm has been improved by von Stengel (1996); Koller et al. (1996).

However, for simplicity, we only show modifications of the initial algorithm for taking

opponent models into account. Adapting them to the improved algorithms is straight-

forward.

Maxmin value against OMs

The setting of maxmin value in the presence of opponent models has already been

studied from a complexity-theoretic perspective for EFGs in Section 4.4. The focus of

the current section is on the algorithmic aspects: we aim to formulate algorithms for

computing the maxmin value against a given set of opponent’s strategies:

E+ ≔ max
e+∈Σ+

min
l−∈ΣO

−

U(e+, l−),

where Σ+ is the set of all pure or all mixed strategies of MAX, depending on the context;

ΣO
− ⊆ ΣB

− is a set of given behaviour strategies of MIN (also called opponent models or

OMs). We will study OM search algorithms for both pure and mixed maxmin, albeit

with a focus on the pure one, since algorithms for mixed maxmin only require minor

modifications in the presence of opponent models.

In general, OMs are models of the opponent’s reasoning, which can come in various

forms (cf. references in Section 2.5). As a quite general setting, we consider that each

OM describes a behaviour strategy of MIN, which are as expressive as mixed strategies

in games with perfect recall, and a fortiori in CGIIs. For a strategy represented

by a mixed strategy or another linear representation (e.g. sequence form (Koller and

Megiddo, 1992), or by an evaluation function (Iida et al., 1993)), its equivalent behaviour

strategy can also be computed in linear time.

146 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

Algorithmically, we assume that the OMs are given in the input and that each

computation of l− (=, 8, =
′) takes constant time, where l− (=, 8, =

′) is the probability

that under the OM strategy l− , MIN chooses =′ ∈ C(=) at node = if MIN is of type

8. In the following, we abuse the notation and use the symbol l− for both a behaviour

strategy of MIN from ΣO
− , and the transition probabilities under the strategy l− of the

form l− (=, 8, =
′).

7.3.3 Opponent-model search

In this subsection, we consider situations where MAX is certain that MIN only picks

strategies described by a set of OMs ΣO
− known by MAX. This assumption will be

relaxed in the next subsection.

Belief States

With the knowledge of OMs, MAX can gain information during the game about the

actual strategy employed by MIN and about MIN’s type, using Bayesian reasoning. In

order to model this, we define the following notion.

Definition 7.3.1 (Non-normalised belief state). Let l− ∈ ΣO
− be an OM. The non-

normalised belief state (NBS) at node = about OMl− , written as NBS(=, l−) ∈ [0, 1]
C ,

is defined recursively in a top-down manner by NBS(A, l−) ≔ ®d and for =′ ∈ C(=), if

= is a node of MAX then NBS(=′, l−) ≔ NBS(=, l−), otherwise3

NBS(=′, l−)8 ≔ NBS(=, l−)8 × l− (=, 8, =
′).

Let us emphasise that we define NBS(=, l−) to be non-normalised; normalising

it (dividing each component by the sum of all components) yields the conditional

probability of MIN’s types, given that = is reached and MIN plays l− .

Single OM

When there is only one OM l− , MAX has complete knowledge of MIN’s strategy.

Then the game becomes a single-player game with perfect information (Koller and

Megiddo, 1992, Section 3.3), and the pure/mixed maxmin value reads

E+ ≔ max
B+∈Σ

P
+

U(B+, l−) = max
f+∈Σ

M
+

U(f+, l−),

where the last equality is due to the linearity ofU.

This value can be computed by a bottom-up (i.e. depth-first) procedure, which

recursively computes MAX’s best strategies at each of their decision node. More

precisely, MIN’s decision nodes become chance nodes. Hence, even though MAX does

not know MIN’s type, they can pick actions to maximise their expected payoff with

respect to MIN’s type.

Example. Consider again the game in Figure 5.6 (page 92), with l− as follows: MIN

plays a if of type 1 or 2, b if of type 4 or 5, and 1
2
a + 1

2
b if of type 3. Given l− and the

uniform prior ®d, MAX can compute the NBS (1
5
, 1

5
, 1

10
, 0, 0) at node �. Normalising this

NBS yields (2
5
, 2

5
, 1

5
, 0, 0), which means if � is reached, then the conditional probability

3Recall that the index 8 designates the 8-th component of a vector.

7.3. OPPONENT-MODEL SEARCH IN VECTOR GAMES 147

of MIN being of type 1 (respectively 2, 3, 4, and 5) is 2
5

(respectively 2
5
, 1

5
, 0, and 0).

Given this NBS, action l yields a higher (non-normalised) payoff of 1/2 than r (with a

payoff of 0) at �.

Similarly, the NBS at � is (0, 0, 1
10
, 1

5
, 1

5
) and prescribes action R (with a payoff

of 1/2). At node A , MAX’s payoff is simply the sum of their (non-normalised) payoff

at � and �, which yields 1. One can check that 1 is indeed the best MAX can get

when playing against MIN under this particular OM, and this payoff is obtained by the

strategy (l,R), which gives MAX a payoff of 1 independent of MIN’s actual type.

Proposition 7.3.2. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A, and let l− be an

OM. For ; ∈ L()), let eval(;) ≔ NBS(;, l−) · ®D(;). Then MiniMax(R, eval,max, +)
satisfies

E+ ≔ max
B+∈Σ

P
+

U(B+, l−) = max
f+∈Σ

M
+

U(f+, l−) = val(A),

and runs in polynomial time (more precisely, in O(C |) |) time).4

This algorithm can be considered as a generalisation of OM search as proposed by

Iida et al. (1993), which only considers games with perfect information for which OMs

are described by MIN’s evaluation functions.

Probabilistic OMs

We now consider the case in which MAX has the knowledge of several OMsl1
− , . . . , l

<
−

of MIN, and a probability distribution ®? = (?1, . . . , ?<) over them: MIN plays the strat-

egy l1
− with probability ?1, l2

− with probability ?2, etc. In particular, the pure/mixed

maxmin value is given by

E+ ≔ max
B+∈Σ

P
+

<∑
9=1

? 9U(B+, l
9
−) = max

f+∈Σ
M
+

<∑
9=1

? 9U(f+, l
9
−).

This setting is not much different from the previous one, due to the linearity of D:

these OMs can be merged into one single OM describing the mixed strategy l− ≔

?1l
1
− + · · · + ?<l

<
− .5 In principle, one can traverse the game tree once and compute

the behaviour strategy corresponding to l− , then run the single-OM algorithm from

Proposition 7.3.2. However, with the help of NBS, one can avoid explicitly computing

and storing the strategy l− .

Proposition 7.3.3. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A, and letl1
− , . . . , l

<
− be

OMs distributed according to ®? = (?1, . . . , ?<). Let eval(;) ≔
∑<

9=1 ? 9 NBS(;, l 9
−) ·

®D(;) for ; ∈ L()). Then MiniMax(R, eval,max, +) satisfies E+ = val(A) and runs in

polynomial time (more precisely, in O(<C |) |) time).

Lexicographic OMs

Consider now the case in which MAX holds a lexicographic belief over MIN’s OMs

l1
− , . . . , l

<
− : MAX deems that MIN most probably follows l1

−; otherwise, with an

4The proof of this and other results in this chapter can be found in the appendix.
5We abuse the notation by writing l8

− for both the given behaviour strategy and its equivalent mixed

strategy.

148 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

infinitesimally smaller probability, MIN follows l2
−; etc. We define the pure/mixed

maxmin value in this case to be the vector of length <

−→E+ ≔ lexmax
B+∈Σ

P
+

(
U(B+, l

1
−), . . . ,U(B+, l

<
−)

)
= lexmax

f+∈Σ
M
+

(
U(f+, l

1
−), . . . ,U(f+, l

<
−)

)
∈ R<,

where lexmax is lexicographic maximum over vectors of length <. In other words, if

there is a unique optimal strategy against l1
− , then this strategy is chosen; otherwise,

ties are broken according to their values against l2
− , and so on.

This setting can be regarded as an instance of probabilistic OMs, where the distri-

bution over OMs is −→?Y = (1, Y, Y2, . . . , Y<−1) with Y an indeterminate interpreted as an

infinitesimally small value. However, we also give a direct algorithm below. We write

NBSM(=) for the < × C NBS matrix(
NBS(=, l1

−)
⊺ , . . . ,NBS(=, l<

−)
⊺
)
,

and +< for component-wise addition of vectors in R<.

Proposition 7.3.4. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A, and let l1
− , . . . , l

<
−

be OMs with a lexicographic interpretation. Let eval(;) ≔ NBSM(;) × ®D(;) ∈ R<

for ; ∈ L()). Then MiniMax(R<, eval, lexmax, +<) satisfies −→E+ = val(A) and runs in

polynomial time (more precisely, in O(<C |) |) time).

Nondeterministic OMs

The last case we consider is when MAX has no probability distribution over MIN’s

OMs: MIN’s strategy is only known to be among l1
− , . . . , l

<
− . This situation is similar

to planning under adversarial cost functions (McMahan et al., 2003). The maxmin

value is then

E+ ≔ max
e+∈Σ+

min
1≤ 9≤<

U(e+, l
9
−),

which, in general, is different depending on whether Σ+ is ΣP
+ or ΣM

+ . MIN now has (a

priori) more agency than in the case of probabilistic OMs, since they can choose from

a larger (but still limited) set of strategies.

We first consider pure maxmin. For 5 , 6 ∈ P<∞ (R
<), define the following operator:

5 ⊕< 6 ≔ {(E 9 + E
′
9)1≤ 9≤< | ®E ∈ 5 , ®E

′ ∈ 6} ⊆ R<.

⊕< is similar to⊓, but takes component-wise sum instead of component-wise minimum

between all pairs of vectors.

Proposition 7.3.5. Let ⟨), P, C, ®D, ®d⟩ be a game with root A , and letl1
− , . . . , l

<
− be OMs

with a nondeterministic interpretation. For ; ∈ L()), let eval(;) ≔ {NBSM(;) × ®D(;)}.
Then MiniMax(P<∞ (R

<), eval,∪, ⊕<) satisfies

E+ ≔ max
B+∈Σ

P
+

min
1≤ 9≤<

U(B+, l
9
−) = max

®E∈val(A)
min

1≤ 9≤<
E 9 .

This algorithm is exponential time in the worst case, which is not surprising since

we have already seen that computing the pure maxmin value against only two non-

deterministic OMs is already NP-hard, even if MAX has complete information (cf.

Proposition 4.4.8, page 58).

7.3. OPPONENT-MODEL SEARCH IN VECTOR GAMES 149

Compared to Proposition 5.4.2 (page 97), the knowledge of OMs transforms MAX’s

incomplete information about MIN’s type into their incomplete information about

MIN’s strategy. Situational values are now sets of vectors of length < (instead of

C). Each such vector represents a strategy of MAX by its expected payoff against each

OM. However, in contrast with probabilistic OMs, we cannot collapse each vector to

a real number, since we have no distribution over the OMs. Still, reduction by weak

dominance can be used just as for pure maxmin without any opponent model (cf.

Subsection 6.3.1).

From another perspective, this algorithm computes the normal form of the game

restricted to MIN’s fixed < strategies, which intuitively justifies the correctness of

Proposition 7.3.5 for pure maxmin.

As for mixed maxmin, one can modify the separation oracle in the LP algorithm of

Koller and Megiddo (1992): now the oracle only computes MIN’s best responses from

the < OMs. This yields a polynomial-time algorithm.

7.3.4 Opponent models with uncertainty

We now come to our second type of opponent-model search, which is about the case

in which a set of OMs of MIN is available, but MAX is not certain that MIN will

behave as one of them. We focus on the case in which there is only one single OM l− ,

which encompasses as well the case of several OMs with a probability distribution or

lexicographic interpretation, as discussed in the last subsection.

We assume that with probability ?∞, which is known to MAX, MIN does not follow

l− , in which case their behaviour is arbitrary and unpredictable, i.e. they can play any

B− ∈ ΣP
−; and with probability 1 − ?∞, MIN follows l− . Intuitively, ?∞ quantifies

MAX’s uncertainty about MIN’s behaviour. This may arise, for instance, when the

OMs are given by an estimate of MIN’s gameplay level: if MAX correctly estimates

MIN’s level, then MAX has a pretty good idea of what MIN will play as strategy;

otherwise MAX cannot predict MIN’s behaviour at all.

Formally, we define the following maxmin value:

E+ ≔ max
e+∈Σ+

(
(1 − ?∞)U(e+, l−) + ?

∞ min
B−∈ΣP

−

U(e+, B−)
)
,

where Σ+ is either ΣP
+ or ΣM

+ .

Example. Consider again the vector game in Figure 5.6 (page 92) and the OM l−
“MIN plays a if of type 1 or 2, b if of type 4 or 5, and 1

2
a + 1

2
b if of type 3”. The best

strategy of MAX against l− is (l,R) with a payoff of 1. However, this strategy does

not fare so well if MIN’s strategy is not l− (or when ?∞ is close to 1): in the worst

case, MIN plays b if of type 1 or 2, and a if of type 4 or 5. Against this strategy, MAX’s

expected payoff from playing (l,R) is only 1/5. On the other hand, the pure maxmin

strategy (l, L) only has an expected payoff of 1/2 against l− , and so does the mixed

maxmin strategy (which is the uniform strategy); hence, neither is optimal when ?∞ is

close to 0.

It is clear from this example that the maxmin value and the optimal strategies depend

on the value of ?∞. This demonstrates a conflict between robustness and performance:

MAX desires to be cautious and robust against MIN’s unpredictable behaviour occurring

with probability ?∞, and at the same time to improve their performance by exploiting

their knowledge of the OM, which correctly predicts MIN’s strategy with probability

1 − ?∞.

150 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

We now show how to modify algorithms from the last sections to compute the

maxmin value.

Mixed maxmin

For the mixed maxmin value, we can use the LP algorithm by Koller and Megiddo

(1992) with a minor modification of the separation oracle: given a threshold E and a

mixed strategy f+ for MAX, the separation oracle should now, apart from computing

MAX’s payoff EBR with f+ against MIN’s best response, also compute MAX’s payoff

against the OM EOM = U(f+, l−), then check whether (1 − ?∞)EOM + ?
∞EBR ≥ E

holds.

Example. In the game in Figure 5.6 (page 92) with l− as above, one can use this

algorithm to verify that MAX’s optimal strategy is (l,R) for ?∞ ≤ 5/8, otherwise it

is the uniform strategy. This confirms that when nondeterministic behaviour happens

with a small enough probability, it is worth deviating from maxmin strategies in order

to exploit the OM.

Pure maxmin

For pure strategies, we build on the algorithm for a single OM (Proposition 7.3.2) and

Ginsberg’s algorithm. To cope with non-locality (due to MIN’s partially unpredictable

behaviour), we use situational values that are finite sets of ordered pairs ⟨B, ®E⟩, with

B ∈ R and ®E ∈ RC . We call such a pair an annotated vector; it implicitly represents

a strategy for MAX for which the payoff against l− is B, and the worst payoff against

MIN’s unpredictable behaviour is given by ®E.
We write P<∞ (R × RC) for the set of all finite sets of annotated vectors, and for

5 , 6 ∈ P<∞ (R × R
C), we define 5 ⊕1,C 6 ⊆ R × RC to be the set

{⟨B + B′, (min(E8 , E
′
8))1≤8≤C ⟩ | ⟨B, ®E⟩ ∈ 5 , ⟨B

′, ®E ′⟩ ∈ 6}.

Proposition 7.3.6. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A , l− be an OM, and

?∞ ∈ [0, 1] a probability that MIN does not follow l− . For all ; ∈ L()), let

eval(;) ≔ {⟨NBS(;, l−) · ®D(;), ®D(;)⟩} ∈ P<∞ (R × R
C).

Then MiniMax(P<∞ (R × R
C), eval,∪, ⊕1,C) satisfies

E+ = max
⟨B, ®E⟩∈val(A)

(
(1 − ?∞)B + ?∞ (®@ · ®E)

)
.

Notice that when combining two annotated vectors at a MIN’s node, the scalar part

is additive; this reflects the fact that when following the (single) OM, MIN has no

agency, just as in the case without uncertainty.

Example. Using the algorithm above for the game in Figure 5.6 (page 92) with the

aforementioned OMl− , we find out that MAX’s optimal strategy is (l,R) for ?∞ ≤ 5/7,

otherwise (l, L) or (r,R). Again, this indicates that it may be worth deviating from

maxmin strategies so as to exploit an OM.

Note that Proposition 7.3.6 implies Proposition 5.4.2 (page 97), since the algorithm

in Proposition 7.3.6 generalises Ginsberg’s algorithm in Proposition 5.4.2, which cor-

responds to the special case ?∞ = 1. In particular, this means Proposition 7.3.6 is not

polynomial time.

7.4. RECURSIVE OPPONENT MODELLING 151

Interestingly, the case ?∞ ≠ 1 supports more sound pruning.6 Indeed, let = ∈ N())
and ⟨B, ®E⟩, ⟨B′, ®E ′⟩ ∈ val(=). Pruning ⟨B′, ®E ′⟩ because of ⟨B, ®E⟩ is sound if MAX is

never worse-off in the game by choosing ⟨B, ®E⟩ instead of ⟨B′, ®E ′⟩ at =. Now since scalar

parts are summed up, if B > B′ holds, then ⟨B, ®E⟩ has an advantage B − B′ over ⟨B′, ®E ′⟩;
contrastingly, for the vectorial part, components for which ®E is larger than ®E ′ might be

erased by the combination (via component-wise min) of vectors at an ancestor of =, so

that the advantage of ®E can be annihilated at the root. Hence, in the worst case, ®E ′ can

keep all advantages it has compared to ®E, while ®E can lose all its advantages.

To summarise, we can prune ⟨B′, ®E ′⟩ when it holds that

(1 − ?∞) (B − B′) ≥ ?∞
∑

1≤8≤C

(
@8 max(E′8 − E8 , 0)

)
,

which indeed generalises the pruning condition related to dominance in Subsec-

tion 6.3.1: when ?∞ = 1, the inequality above reduces to E′8 ≤ E8 for all 8, which

means ®E dominates ®E ′.

7.4 Recursive opponent modelling

We now propose an application of the algorithms presented in the last section to the

computation of optimal strategies with recursive opponent models. We formulate a

quite general setting, where various types of opponent models naturally arise.

Limitations of the best-defence model

In general, in a game with incomplete information, both players have incomplete infor-

mation, rather than just MAX. As a result, the best-defence model usually gives MIN

too much power.

Example. Consider the game in Figure 7.3, where MAX has 3 types (with a uniform

prior) and MIN has only 1. Then MIN has incomplete information. If MAX reasons

according to the best-defence model, then both actions a and b have a value of 0: MAX

of type 8 reasons that MIN will play a8 at node �, and b 9 at node � for some 9 ≠ 8. The

culprit is that MAX assumes MIN is aware of MAX’s type so that MIN can adapt their

strategy to MAX’s type. However, if MAX realises MIN is unaware of their type, then

MAX will prefer a since under uniform common prior over MAX’s types, a yields an

expected payoff of 2/3, compared to b’s 1/3.

R
a b

A

(0 1 1)

a1

(1 0 1)

a2

(1 1 0)

a3

B

(1 0 0)

b1

(0 1 0)

b2

(0 0 1)

b3

Figure 7.3: A vector game with 3 possible types of MAX.

6Recall that for Ginsberg’s algorithm, the only sound pruning is the elimination of dominated strategies

(cf. Subsection 6.3.1).

152 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

On the other hand, computing maxmin strategies for the original game tree without

using the best-defence model is not ideal either, for these strategies fail to exploit

any assumption one may have about their adversary, such as that they have limited

computational power or reasoning depth, or that they have a predictable behaviour.

Such assumptions make sense in particular when playing against humans (Iida et al.,

1993; Stahl and Wilson, 1995; Dhami, 2019).

Proposed framework

We propose a framework that can be considered as a generalisation of the cognitive

hierarchy model (Camerer et al., 2004), and as a counterpart of interactive POMDPs

(Doshi et al., 2020) for competitive games. The idea is to define level-: strategies to

be the optimal strategies against an adversary of level : − 1, and recursively down to

level 0. Our framework serves as a compromise between the best-defence model and

the full game, and can be used to find better strategies against non-omnipotent and

non-omniscient players; in particular, it generalises the best-defence model. Moreover,

it can be used to explain real-life human psychological gameplay in games such as

Bridge, as we illustrate at the end of this section.

We give a parametrizable definition of (1) how level-0 strategies are defined, (2) how

optimal strategies at a given level are aggregated, and (3) how strategies of various levels

are aggregated. LetΣ0
+, Σ

0
− be non-empty sets of strategies of MAX and MIN. Moreover,

for 8 ∈ {+,−}, let ⊕8 : P(Σ8) → Σ8 map any set of (pure or mixed) strategies of player

8 to a single strategy of player 8, and BR8 : Σ∗−8 → P(Σ8) map any tuple of strategies

of player −8 to a set of strategies of player 8. ⊕ will aggregate strategies of a player at a

given level, and BR will compute the set of optimal strategies given a tuple of opponent

models (one per lower level).7

Definition 7.4.1 (level-: strategies). Let Σ0
8
, ⊕8 , and BR8 be defined as above for

all 8 ∈ {+,−}. The set of level-0 strategies for player 8 is defined to be Σ0
8
. For

: ≥ 1, the set of level-: strategies for player 8, denoted by Σ:
8
, is defined to be

BR8

(
⊕−8 (Σ

:−1
−8), ⊕−8 (Σ

:−2
−8), . . . , ⊕−8 (Σ

0
−8)

)
.

In short, the level-: strategies of player 8 are the best responses (computed by BR8 ,

the best-response function) against an opponent using the strategy ⊕−8 (Σ
:′

−8) (computed

by ⊕−8 , the intra-level aggregation) at each level : ′ for 0 ≤ : ′ < : . The boundary

conditions, i.e. the level-0 strategies, are given by Σ0
8
, which can come from maxmin

strategies under the best-defence model, randomly chosen strategies (McMahan et al.,

2003), modelling assumptions for human players (Wright and Leyton-Brown, 2019),

etc.

Example. The Poisson-CH model in Camerer et al. (2004) is captured by choosing Σ0
+

and Σ0
− to be the set of all pure strategies of MAX and MIN, the intra-level aggregation

⊕ to map any set of strategies to the uniform mixture of the set, and the best-response

function BR to map a tuple of strategies (f:−1
−8 , . . . , f0

−8) to the set of all pure best

responses to the mixed strategy ?:−1f
:−1
−8 + · · · + ?0f

0
−8 , where ?:−1, . . . , ?0 follow

some Poisson distribution.

Although we do not show it here, this framework is also general enough to encompass

many iterative approaches of solving games: iterative best response (also called best

7The framework could be easily adapted to more general functions, e.g. an aggregation of the strategies

at the same level into a set or a tuple of strategies. It could also be easily applied to general games, in normal

form or extensive form, beyond the two-player and zero-sum assumptions.

7.4. RECURSIVE OPPONENT MODELLING 153

response dynamics); fictitious play (Brown, 1951; Cloud et al., 2023); double oracle

(McMahan et al., 2003); maxn or prob-maxn (Sturtevant et al., 2006); etc.

An interesting choice for intra-level aggregation ⊕8 : P(Σ8) → Σ8 for all 8 is

the uniform mixture, as in the previous example. With this, many situations can be

modelled by using different best-response functions BR for inter-level aggregation, in

particular using the algorithms presented in previous sections.

• Using the probabilistic OM search algorithm in Proposition 7.3.3, we can model

situations where each player 8 at level : has a subjective distribution (described

by ?:−1
8,:

, ?:−2
8,:

, . . . , ?0
8,:

) over player −8’s reasoning levels, obtained for instance

by fitting a model against a population of possible opponents;

• Setting ?:−1
8,:

= 1 for all 8 and : in the previous model, we can model the situation

where each player at level : assumes their opponent reasons at level exactly : −1;

• Using the lexicographic OM search algorithm in Proposition 7.3.4, we can model

situations where player 8 at level : assumes player −8 to reason at level : − 1,

tie-breaks equivalent strategies by assuming them to reason at level : − 2, and so

on;

• Using the nondeterministic OM search algorithm in Proposition 7.3.5, we can

model situations where player 8 at level : assumes player −8 to reason at an

unknown level lower than : (then the incomplete information about player −8’s
type becomes one about their level, which is, in general, much smaller);

• Using OM search algorithm with uncertainty in for example Proposition 7.3.6,

we can model situations where player 8 assumes that with a certain probability −8
does not reason at any level lower than : .

Let us also emphasise that the straightforward generalisation of the framework

in Definition 7.4.1 to general games allows, for instance, to take into account one’s

partner’s incomplete information in multiplayer games, akin to interactive POMDPs.

A real-life example

We now give an example application of our formalism, which captures the psychological

strategies of a contract Bridge deal played in a Bridge tournament. We present the

abstract version of the game in Figure 7.4 (left); for the Bridge deal itself, see Deal 3

(page 169) in Appendix A.4.1.

A

(
1
1

)
l h

B

(
1
0

)f (
0
1

)nf

: MAX MIN 1 MIN 2

0 {nf} {l, h} {l, h}
1 {nf} {h} {l, h}
2 {f} {h} {l, h}
3 {f} {h} {h}

Figure 7.4: Level-: strategies in a vector game with 2 types of MIN.

In this game, the common prior about MIN’s types is given by ?1 = 0.4 and

?2 = 0.6. For the recursive reasoning, for 8 ∈ {+,−}, ⊕8 is given by the uniform

154 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

mixture, BR8 is given by the lexicographic model, and the level-0 strategies for both

players are their pure maxmin strategies. Figure 7.4 (right) shows the level-: strategies

for MAX, MIN if of type 1, and MIN if of type 2, and for : = 0, . . . , 3. For instance, if

MIN is of type 2, then their level-1 strategies are l and h.

The first few levels of the recursive reasoning proceed as in Figure 7.4 (right). In

the following, we write f1
− |f

2
− for MIN’s strategy to play f1

− if of type 1 and to play

f2
− if of type 2; and l+h

2
for the uniform mixed strategy 1

2
l + 1

2
h.

k = 0: MAX prefers nf, which achieves a maxmin value of 0.6, against 0.4 for f; both

types of MIN are indifferent between l and h since both yield a minmax value of

1.

k = 1: Against (⊕(Σ0
−)) = (

l+h
2
| l+h

2
), MAX’s best strategy is still nf; however, against

(⊕(Σ0
+)) = (nf), type-1 MIN prefers h which yields a value of 0.

k = 2: Against (⊕(Σ1
−), ⊕(Σ

0
−)), MAX now prefers f, which is strictly better than nf

against ⊕(Σ1
−) = h| l+h

2
since the NBS of MAX at node B judges MIN is more

likely to be of type 1 than of type 2 if MIN plays h| l+h
2

;

k = 3: At level-3, type-1 MIN still prefers h: h and l are equivalent against ⊕(Σ2
+) = f,

but h is preferred against ⊕(Σ1
+) = nf; but now type-2 MIN also prefers h!

As it turns out, this recursive reasoning captures perfectly what happened during the

Bridge deal, where MAX was at level 2 and therefore chose f (rather than the maxmin

strategy nf) while MIN, being of type 2, reasoned at level 3 and used strategy h to defeat

MAX. Another interesting point is that level-: strategies are not necessarily weakly

dominant; hence they incorporate some notion of risk. For instance, MAX’s level-2

strategy f performs better than the maxmin strategy nf against MIN of level 1 (it pays

0.7 instead of 0.6), but it performs worse against MIN of level 3 (0.4).

7.5 Conclusion

In this chapter, we have first argued about the need to go beyond the best-defence model

in general games with incomplete information. Several promising ideas to this end have

been briefly discussed. One of them, opponent-model search, is thoroughly explored

from both modelling and algorithmic perspectives. Near the end, we have presented a

general framework of recursive opponent modelling, instantiations of which are widely

used in the literature to compute (exactly or approximately) different solution concepts.

Prospectives

As we have said in the introduction of this chapter, most ideas in this chapter are still in

their infancy. Hence, a major axis of future work will be the ironing out of the details.

To cite a few directions:

• exploring algorithms such as counterfactual regret minimisation to compute the

approximate values of behaviour maxmin of CGIIs limited to a smaller size of

the universe;

• considering opponent-model search for compactly represented games, for oppo-

nent models not given as oracles of behaviour strategies of MIN, for other kinds

of uncertainty over the opponent models;

7.5. CONCLUSION 155

• exploring other recursive modellings in the literature, especially those in the field

of behavioural game theory, and showing how they are captured by our general

framework of recursive opponent modelling;

• giving an epistemic foundation (e.g. by using doxastic or epistemic logic) of our

recursive framework, in the spirit of the notion of rationalisability in epistemic

game theory.

156 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

Conclusion and perspectives

In this dissertation, we have focused on game theory, an important field relevant to

decision-making and artificial intelligence, and at the intersection of economics, math-

ematics, and computer science. Among the manifold topics in game theory, we have

chosen to focus on finding robust strategies for extensive-form games (EFGs), which

are models for sequential multi-agent interaction, due to the motivation and inspiration

from the game of Bridge.

After surveying vast and interconnected subjects related to our work and presenting

the rudiments of game theory, we have proceeded to study the computational complexity

of computing the pure maxmin value for two-team EFGs of chance or of no chance,

and with different degrees of imperfect information for team MAX and team MIN. In

this thorough study, we have proposed new polynomial-time algorithms; strengthened

existent hardness results in the literature by showing that they hold even under strong

restrictions (Boolean payoffs, at most 2 agents per team, etc); proved new complexity

results. Our work thus provides a complete complexity landscape for pure maxmin.

Then we have further advanced on three different axes: the complexity of compactly

represented games; the complexity of games with a known and finite set of strategies

for the opponent (i.e. opponent models); and the complexity of finding an upper bound

or the exact value of pure maxmin. We have carefully chosen the reductions we use

to (1) give better intuitions about how EFGs can be used to encode difficult problems

(e.g. NP-hard); (2) show that the hardness results hold under minimal assumptions;

(3) facilitate future work on inapproximability or parameterised complexity results.

Then, we have turned our attention to games with incomplete information, which

are special cases of games with imperfect information that describe situations in which

players do not have common knowledge about the game they play. After discussing

the notion of incomplete information (and contrasting it with imperfect information),

we have introduced a new formalism called combinatorial games with incomplete

information (CGIIs). CGIIs are games with incomplete information that have no

chance node except for the initial drawing by Nature, and only public actions. CGII is a

formalism that (1) minimally generalises the formalism of combinatorial games to allow

incomplete information; (2) minimally captures the essence of the notion of incomplete

information; (3) allows modelling the card play of Bridge. We have started the study

of CGIIs by showing that finding optimal strategies in CGIIs has the same complexity

as in the more general model of EFGs, which implies that CGIIs and EFGs are equally

expressive, and warrants interest in studying this new formalism as a simpler and more

minimal way to emphasise public actions and incomplete information in sequential

games. In proving the hardness results for CGIIs, we make use of various gadgets of

reduction to show how notions such as concurrent actions can be encoded in CGIIs.

Next, we have switched the focus to algorithmic aspects of solving CGIIs. The best-

defence model from the literature has been introduced and firmly justified. Notions

157

158 CHAPTER 7. OPPONENT MODELS AND RECURSIVE REASONING

of strategy fusion and non-locality have been explained in details, to make them more

intuitive, so as to understand where the difficulty of solving games with incomplete

information comes from. A depth-first algorithm called Ginsberg’s algorithm, which

computes the exact pure maxmin value of CGIIs under the best-defence model, has

been presented in its fully general form. Then we have studied various sources of exact

optimisations of Ginsberg’s algorithm, such as strategy prunings (e.g. elimination of

dominated strategies) and game tree prunings (e.g. alpha-beta search). These optimisa-

tions, although being designed for Ginsberg’s algorithm or inspired by human gameplay

strategies in Bridge, have been presented in an entirely general way, to emphasise that

they are applicable beyond Ginsberg’s algorithm and CGIIs.

Finally, we have briefly discussed reasoning in games, and more specifically in

CGIIs. The interest of reasoning about opponents’ strategies and state of mind lies in

both the need to go beyond the best-defence model (which greatly reduces the complex-

ity, but can be suboptimal when the opponent has too much incomplete information),

and the need to take into account the fact that opponents (especially when they are

humans) are unlikely to play perfectly against our interest, for various reasons, e.g. lim-

itations of computational resources. To show the algorithmic feasibility of reasoning

about opponents’ strategies, we have designed algorithms for opponent-model search

for CGIIs. These algorithms can be used in a very general framework of recursive oppo-

nent modelling, which encompasses many solution concepts or iterative algorithms for

solution concepts, especially from the fields of behavioural game theory and epistemic

game theory.

Perspectives

To summarise, we have looked at games with incomplete information from three dif-

ferent perspectives: complexity, algorithmics, and reasoning.

For complexity, we may tie up some loose ends, e.g. the precise relationship between

the oracle games that we have defined and GDL, the complexity of games with absent-

mindedness (i.e. imperfect information but not multi-agent perfect recall), etc. It will

also be desirable to refine the proofs of hardness results for CGII to make them simpler

to understand, or easier to be adapted to other variants of the decision problem Pure

Maxmin.

For algorithmics, the most interesting directions are to look for exact (and ide-

ally depth-first) algorithms for CGIIs that are not under the best-defence model; to

incorporate Monte Carlo techniques into Ginsberg’s algorithm; and to test different

optimisations on well-founded benchmarks.

Finally, for reasoning in games, the aspect the least studied by us, there are even

more fascinating topics to investigate, including, but not restricted to, formal defini-

tions for various kinds of recursive reasoning in games (about knowledge, opponents’

strategies or state of mind, etc.); algorithms for automating such reasoning; epistemic

characterisations for recursive modelling; etc.

Appendices

159

Appendix A

Reminders of definitions

161

162 APPENDIX A. REMINDERS OF DEFINITIONS

In this chapter, we collect reminders of notions from different fields that are used

in the main text, except those from game theory, which have already been given in

Chapter 3.

A.1 Graph theory

Definition A.1.1 (Directed graph). A (directed) graph is a pair (+, �), where + is a

finite set (the elements of which are called vertices), and � ⊆ + × + is a finite set of

pairs of vertices (called edges).

Remark. In this dissertation, we will use the terms vertex and node almost interchange-

ably. With “vertex”, we emphasise that it is an element in the graph; with “node”, we

emphasise that it is a place where a player makes a decision (i.e. the notion of decision

node).

Definition A.1.2 (Path). Let E, E′ ∈ + be two vertices in a graph. A path from E to E′ is a

finite (possibly empty) sequence of edges (E, E1), (E1, E2), . . . , (E=−1, E=), (E=, E
′) ∈ � ,

also denoted by (E, E1, . . . , E=, E
′). Two paths are considered identical if they are

composed of exactly the same sequence of edges.

Definition A.1.3 (DAG). A directed acyclic graph is a directed graph such that there is

no non-empty path from any vertex to itself.1

Definition A.1.4 (Tree). A tree is a DAG (+, �) such that there is a unique vertex A ∈ +
(called the root), such that for every E ∈ + , there is a unique path from A to E.

We denote an arbitrary tree by a triple) = (+, �, A).

Definition A.1.5 (Parent and child). Let (+, �, A) be a tree. Let E, E′ ∈ + . If (E, E′) ∈ � ,

we call E′ a successor or a child of E, and E the predecessor or the parent2 of E′. If there

is a non-empty path from E to E′, we call E′ a descendant of E, and E an ancestor of E′.

A vertex without successor is called a leaf. A vertex that is not a leaf is called non-leaf

or internal vertex.

For a tree) , we write N()) and L()) for the set of its nodes and its leaves,

respectively. For an internal vertex E ∈ N()) \ L()), we write C(E) for the set of

children of E.

A.2 Complexity classes

The complexity classes we use in this dissertation have the same standard meaning as in

the literature. Readers can refer to Arora and Barak (2009, Definition 5.3, for instance)

for formal definitions. Below, we only give an intuitive characterisation of the classes

that we use.

• The class P contains all languages that can be decided by a polynomial-time

Turing machine.

1Such a non-empty path, which contains at least one edge, is called a cycle, hence the name “acyclic”.
2In a tree, every vertex except the root has a unique predecessor/parent, hence the article “the”.

A.2. COMPLEXITY CLASSES 163

• The class NP contains all languages that can be decided by a polynomial-time

nondeterministic Turing machine. Equivalently, NP contains all languages !

such that

G ∈ ! ⇐⇒ ∃H ∈ {0, 1}? (|G |) , (G, H) ∈ !′,

where ? is a polynomial and !′ is a language in P.

• The class coNP is the set of complements of languages in NP. Equivalently, coNP

contains all languages ! such that

G ∈ ! ⇐⇒ ∀H ∈ {0, 1}? (|G |) , (G, H) ∈ !′,

where ? is a polynomial and !′ is a language in P.

• The class ΔP
2
, also written as PNP, contains all languages that can be decided by

a polynomial-time Turing machine with the help of an NP oracle.3

• The class ΣP
2
, alternatively defined as NPNP, contains all languages ! such that

G ∈ ! ⇐⇒ ∃H1 ∈ {0, 1}
? (|G |) ,∀H2 ∈ {0, 1}

? (|G |) , (G, H1, H2) ∈ !
′,

where ? is a polynomial and !′ is a language in P.

• The class ΠP
2
, alternatively defined as coNPNP, is the set of complements of

languages in ΣP
2
. Equivalently, ΠP

2
contains all languages ! such that

G ∈ ! ⇐⇒ ∀H1 ∈ {0, 1}
? (|G |) , ∃H2 ∈ {0, 1}

? (|G |) , (G, H1, H2) ∈ !
′,

where ? is a polynomial and !′ is a language in P.

• The class PSPACE contains all languages that can be decided by a polynomial-

space Turing machine.

• The class EXP contains all languages that can be decided by an exponential-time

Turing machine.

• The class NEXP contains all languages that can be decided by an exponential-time

nondeterministic Turing machine. Equivalently, NEXP contains all languages !

such that

G ∈ ! ⇐⇒ ∃H ∈ {0, 1}2
? (|G |)

, (G, H) ∈ !′,

where ? is a polynomial4 and !′ is a language in P.

• The class NEXPNP contains all languages that can be decided by an exponential-

time nondeterministic Turing machine with the help of an NP oracle. Equiva-

lently, NEXPNP contains all languages ! such that

G ∈ ! ⇐⇒ ∃H1 ∈ {0, 1}
2? (|G |)

,∀H2 ∈ {0, 1}
2? (|G |)

, (G, H1, H2) ∈ !
′,

where ? is a polynomial and !′ is a language in P.

3An NP oracle decides the membership of a language in NP in one step. However, the Turing machine

making use of such an oracle still needs time to write down the queries to the oracle, which, in this case,

takes exponential time.
4Hence, the size of the witness H is exponential in G.

164 APPENDIX A. REMINDERS OF DEFINITIONS

We also use some less known complexity classes. DP
: is the set of languages !

that can be written as ! = !1 ∩ !2 with !1 ∈ ΣP
:

and !2 ∈ ΠP
:
, or equivalently as the

difference of two languages in ΣP
:

(or two languages in ΠP
:
). The most well-known one

is DP
1 , which is also called DP in the literature. Intuitively, DP corresponds to problems

that concern the optimal value of an optimisation problem in NP (Papadimitriou, 1994).

By generalising the argument in Papadimitriou (1994, Theorem 17.1), one can prove

the DP
: -hardness of a language ! by showing that there are a ΣP

:
-hard language !1, a

ΠP
:
-hard language !2, and a polynomial-time reduction 5 such that

⟨G, H⟩ ∈ !1 × !2 ⇐⇒ 5 (⟨G, H⟩) ∈ !.

A.3 Sets

In this dissertation, we usually write (for a finite set without a particular structure, while

+ for a set of vertices, a poset, or lattice (see Subsection A.3.2 for their definitions).

Definition A.3.1 (Cardinality). Let (be a finite set. The cardinality (or size) of (,

denoted by |(|, is the number of elements in (.

Definition A.3.2 (Powerset). Let (be a finite set. The powerset of (, denoted by P((),
is the set of all subsets of (:

P(() = {(′ | (′ ⊆ (}.

Definition A.3.3 (Partition). Let (be a finite set. A partition of (is a setS of non-empty

subsets of (such that the subsets in S are pairwise disjoint, and their union is (:

∀(′, (′′ ∈ S, (′ ≠ (′′ =⇒ (′ ∩ (′′ = ∅,

and
⋃

(′∈S = (. A partition is said to be the finest partition if it only contains singleton

sets; it is said to be the coarsest partition if S = {(}.

Definition A.3.4 (Simplex). Let (be a countably finite set. The simplex of (, denoted

by Δ((), is the set of all probability distributions over (, i.e. mappings ? : (→ [0, 1]
such that

∑
B∈(?(B) = 1.

A.3.1 Family algebra

We present here the family algebra: algebraic conventions for binary operators over

families of a finite set. This terminology is introduced by Knuth (2011).

Definition A.3.5 (Family). Let (be a finite set. A family of (is an element of P(P(()),
i.e. a set of subsets of (.

Example. A partition of (is a family of (. Here are some more simple examples of

families:

• The empty family ∅, which contains no subset of (.

• The unit family {∅}, which only contains the empty subset of (.

• The elementary families
{
{ 9}

}
for 9 ∈ (.

A.3. SETS 165

Let 5 , 6 ∈ P(P(()) be two families of (. One can construct new families of (

using the following operators.

union 5 ∪ 6 = {U | U ∈ 5 ∨ U ∈ 6};

intersection 5 ∩ 6 = {U | U ∈ 5 ∧ U ∈ 6};

join 5 ⊔ 6 = {U ∪ V | U ∈ 5 ∧ V ∈ 6};

meet 5 ⊓ 6 = {U ∩ V | U ∈ 5 ∧ V ∈ 6};

maximal elements 5 ↑ = {U ∈ 5 | ∀V ∈ 5 , U ⊆ V =⇒ U = V};

minimal elements 5 ↓ = {U ∈ 5 | ∀V ∈ 5 , U ⊇ V =⇒ U = V}.

In the main text, we refer to these operators as operators from the family algebra.

A.3.2 Lattices

The following definitions on posets and lattices are based on Davey and Priestley (2002).

Lattices as ordered sets

Lattices can be defined as partially ordered sets satisfying some additional properties.

Definition A.3.6 (Poset). Let + be a set and ⪯ be a binary relation on + . Then (+, ⪯)
is called a partially ordered set (poset) if ⪯ is a partial order (i.e. reflexive, transitive,

and antisymmetric).

Definition A.3.7 (Least upper bound and greatest lower bound). Let (+, ⪯) be a poset

and let (⊆ + . An element G ∈ + is called an upper bound of (if B ⪯ G holds for

all B ∈ (, and G is called a least upper bound if in addition G ⪯ H holds for all upper

bounds H of (. A greatest lower bound of (is defined dually.

Remark. If a subset (has a least upper bound (or greatest lower bound), then it is

unique. Hence, we can say the least upper bound (or greatest lower bound) of a subset,

when it exists.

For G, H ∈ + , we write G ∨ H (‘G join H’) and G ∧ H (‘G meet H’) for the least upper

bound and the greatest lower bound of {G, H}, respectively, when they exist.

Definition A.3.8 (Lattice as poset). A poset (+, ⪯) is called a lattice if for all G, H ∈ + ,

G ∨ H and G ∧ H exist.

Lattices as algebraic structures

Lattices can also be defined as algebraic structures. Let + be a set and ∨ : + × + → +

be an arbitrary binary operator on + . Then ∨ is said to be:

associative if (G ∨ H) ∨ I = G ∨ (H ∨ I) for all G, H, I ∈ + ;

commutative if G ∨ H = H ∨ G for all G, H ∈ + ;

idempotent if G ∨ G = G for all G ∈ + .

166 APPENDIX A. REMINDERS OF DEFINITIONS

Definition A.3.9 (Lattice as algebraic structure). A lattice is a set + equipped with two

binary operators ∨ and ∧ on + that are associative, commutative, idempotent, and

satisfy the absorption identities: for all G, H ∈ + , G ∨ (G ∧ H) = G and G ∧ (G ∨ H) = G.

Remark. Notice that associativity, commutativity, and idempotency concern only one

operator, while the absorption identities are the only properties that relate the two

operators of a lattice.

Lattices as both ordered sets and algebraic strctures

The two definitions of lattice actually define the same notion.

On one hand, a lattice as algebraic structure (+,∧,∨) induces a partial order ⪯ on

+ by

∀G, H ∈ +, G ⪯ H ⇐⇒ G ∧ H = G ⇐⇒ G ∨ H = H.

In addition, (+, ⪯) is a lattice as ordered set, with ∨ and ∧ as least upper bound and

greatest lower bound operators with respect to ⪯.

On the other hand, a lattice (+, ⪯) as ordered set is equipped with two binary

operators ∨ (least upper bound) and ∧ (greatest lower bound). These two operators

are associative, commutative, idempotent, and satisfy the absorption identities. Hence,

(+,∨,∧) is a lattice as algebraic structure.

Bounded and distributive lattices

In the main text, we denote a lattice by (+, ⪯,∧,∨), or simply (+,∧,∨) when the partial

order is not important. We mostly use lattices that are bounded and distributive.

Definition A.3.10 (Bounded lattice). A lattice + is said to be bounded if there are

elements ⊥,⊤ ∈ + (called bottom and top, respectively) satisfying ⊥ ⪯ G and G ⪯ ⊤
for all G ∈ + .

Definition A.3.11 (Distributive lattice). A lattice + is called distributive if ∨ and ∧
distribute over each other, i.e. for all G, H, I ∈ + , it holds that

G ∨ (H ∧ I) = (G ∨ H) ∧ (G ∨ I),

G ∧ (H ∨ I) = (G ∧ H) ∨ (G ∧ I).

Example. Let (be a set and let P(() denote its powerset. Then (P((), ⊆,∩,∪) is a

bounded distributive lattice with set inclusion ⊆ as partial order, set intersection ∩ and

set union ∪ respectively as meet and join, ∅ as ⊥, and (as ⊤.

In a distributive lattice, applying distributivity twice yields that for all G, H, I ∈ + ,

G ∨ (H ∧ I) = (G ∨ H) ∧ (G ∨ I) = G ∨
(
H ∧ (G ∨ I)

)
, (A.1)

G ∧ (H ∨ I) = (G ∧ H) ∨ (G ∧ I) = G ∧
(
H ∨ (G ∧ I)

)
. (A.2)

which are usually referred to as insertion identities. These identities are very helpful in

establishing results in the main text.

A.4. RULES OF BRIDGE 167

A.4 Rules of Bridge

We briefly present the rules of the game of Bridge, so that readers can have an intuition

about its gameplay. For details, one can for example consult the Wikipedia page about

contract Bridge, or the book by Fédération Française de Bridge (2013, in French only),

an introduction to Bridge of excellent pedagogical quality.

A deal of Bridge begins by dealing a standard deck of 52 cards to 4 players (2 teams

of 2 players); each player receives 13 cards privately. Then, the game proceeds in two

phases:

Bidding During the bidding phase, players take turns to give some information about

their hidden hand to their partner (but also to their opponents) in order to find

the best contract to play. Informally, a contract consists of a suit chosen to be the

trump suit, and a number of tricks to be taken. We do not dwell on the details of

the bidding phase; it suffices to know that each team can use their own bidding

conventions, but all such conventions are required to be common knowledge (i.e.

for each team, their opponents know the conventions of the team, the team know

that their opponents know their conventions, ad infinitum).

Card play The player who has won the bidding becomes declarer of the deal, and

their two opponents (on the left-hand side and on the right-hand side) become

defenders. The left-hand defender chooses a card, called the lead, to begin the

first trick. After the lead is chosen and revealed to everyone on the table, the

partner of declarer, called dummy, lays down their hand on the table to reveal it

to everyone. The card play proceeds as a trick-taking game: during each trick,

a card is played from each hand clockwise, and the hand that plays the winning

card of the trick begins the next trick; in addition, declarer controls which card

to play from dummy’s hand during each trick. After 13 tricks have been played,

declarer wins if they have collected enough tricks to fulfil their contract.

The inspiration of many subjects treated in this dissertation comes from the card

play phase of Bridge, which can be considered as a game with incomplete information in

which MAX (declarer) has single-agent incomplete information (declarer does not see

defenders’ hands), MIN (defenders) have multi-agent incomplete information (defenders

do not see each other’s hand, nor declarer’s hand), there is no chance node (except for

the initial dealing of cards), and there are only public actions (each card played by a

player is observed by everyone in the game).

A.4.1 Bridge deals

In this subsection, we present a few deals that illustrate certain concepts that we have

discussed in the main text.

Deal 1: non-locality

In Deal 1, West cashes three rounds of clubs, then plays a fourth round. For declarer, it

is natural to adopt the following line: ruff high in dummy, then draw trumps in two or

three rounds and claim the rest. With this line, declarer wins whenever the trumps are

not 4-0, which means more than 90% of all possible cases. Hence, this line since far

superior to either the spade finesse or the diamond finesse, both cover around 50% of

all possible cases. However, the first line is actually a Greek gift from West. Normally,

168 APPENDIX A. REMINDERS OF DEFINITIONS

Deal 1 A Bridge deal from Les donnes du Monde (N°541) showcasing the phenomenon

of non-locality.

♠ AQJ2

♥ AJ4

♦ KJ5

♣ 1092

♠ K6

♥ 10853

♦ Q104

♣ AKQ4

N

W E

S

♠ 109754

♥ -

♦ 98632

♣ J83

♠ 83

♥ KQ9762

♦ A7

♣ 765

West North East South

2♥ Pass 2NT 3♦
Pass 4♥ Pass Pass

Pass

West would not have incentive to give you a ruff and discards. But in this particular

deal, West knows that both of your finesse will succeed; they thus offer you a losing

option to take the ruff and discard, thereby promoting their fourth trump to the setting

trick.

Deal 2: opponent-model search

Deal 2 A Bridge deal from Bourke (2005, Chapter 10) in which declarer exploits the

signals between defenders.

♠ J9

♥ 95

♦ K754

♣ 97532

♠ A63

♥ Q10643

♦ 1092

♣ K6

N

W E

S

♠ 10872

♥ J7

♦ J83

♣ Q1084

♠ KQ54

♥ AK82

♦ AQ6

♣ AJ

West North East South

- - - 2♣
Pass 2♦ Pass 2NT

Pass 3NT Pass Pass

Pass

In Deal 2, declarer performs an opponent-model search by exploiting the signals

between defenders. After the lead of diamond to East’s jack of hearts and to declarer’s

king of hearts, declarer only has six top tricks. The best shot to develop 3 additional

tricks is to finesse against the 10 of spades or to hope for a 3-3 split for diamonds. There

is no way to accumulate these two opportunities due to the lack of entries. However, it

could be beneficial to lead the queen of diamond in the second trick. Both defenders

will probably give an honest signal since their partner could have the ace of diamond.

Hence, if both defenders follow low, declarer can assume a 3-3 split for diamonds.

Otherwise, declarer plays spade to dummy’s 9.

A.4. RULES OF BRIDGE 169

Deal 3: recursive reasoning

Deal 3 A Bridge deal from Karpin (1977, p.266) that exhibits a recursive reasoning at

level-3.

♠ Q75

♥ 8

♦ AQ1097

♣ AK106

♠ J

♥ AJ109764

♦ 6

♣ QJ94

N

W E

S

♠ 106

♥ K52

♦ 8432

♣ 8752

♠ AK98432

♥ Q3

♦ KJ5

♣ 3

West North East South

4♥ Pass Pass 4♠
Pass 6♠ Pass Pass

Pass

In Deal 3,5 by a brilliant defensive false-card, the East defender succeeded in creating

a tread of thought in declarer’s mind which led to declarer’s defeat in a cold six-spade

contract.

West opened the ace of hearts, upon which East, dropped the king! West, of course,

continued with another heart, which was ruffed by dummy’s queen (to prevent the

“obvious” overruff.) When East followed to the second round of hearts, South was

certain that the only plausible excuse for East’s false-card was that East possessed the

J-10-6 of spades. So the seven of spades was led from dummy, and finessed! West’s

singleton jack took the setting trick.

Before criticising declarer, remember one thing: East would also have made the

false-card if he had had the J-10-6 of trumps; declarer would then have become a

temporary genius instead of a gullible victim.

5The narrative for this deal is also taken from Karpin (1977, p.267).

170 APPENDIX A. REMINDERS OF DEFINITIONS

Appendix B

Proofs

171

172 APPENDIX B. PROOFS

B.1 Proofs for Chapter 4

B.1.1 Lemmas for Proposition 4.2.4

Recall that for all E ∈ + in a game of no chance, ΣP
+,E ⊆ ΣP

+ is the set of pure strategies

of MAX under which E is reachable, similarly for ΣP
−,E ⊆ ΣP

− . Although we will not

formally prove it here, in a game with multi-agent perfect recall, the sets ΣP
+,E and ΣP

−,E

are non-empty for all vertices E. To see this, notice that the path from the root to a

vertex intersects every information set of MAX or of MIN at most once, which means

the path induces a well-defined pure strategy along the path for both MAX and MIN;

see also the proof of Lemma B.1.3.

We first show that if a vertex is reachable under both a pure strategy of MAX and

under a pure strategy of MIN, then this vertex is actually reached when both strategies

are implemented.

Lemma B.1.1. In a two-player EFG of no chance, if B+ ∈ ΣP
+,E and B− ∈ ΣP

−,E for a

certain E ∈ + , then E is in the playout under the pure strategy profile (B+, B−).

Proof. Let E ∈ + . We show that if (B+, B−) ∈ Σ
P
+,E ×Σ

P
−,E , then E is in the playout under

this profile. Let E∗ be the lowest common vertex between the path from the root A to E

and the playout under the profile (B+, B−). E
∗ is well-defined since the root is reached

during this playout. We will show that E∗ = E.

Suppose by contradiction that this is not the case. Let E′ be the successor of E∗ in

the path from A to E, which exists since E∗ ≠ E. Suppose without loss of generality that

E∗ is a decision node of MAX. Then under B+, MAX does not take the unique action

leading from E∗ to E′ at MAX’s information set containing E∗. Then, no matter what

pure strategy MIN implements, E′ cannot be reached when MAX plays B+. As a result,

E′ is not reachable under B+, and a fortiori neither is E, which is a descendant of E′.

This contradicts the assumption that B+ ∈ Σ
P
+,E .

Therefore, we must have E∗ = E, hence E is in the playout under the profile (B+, B−).
□

Lemma B.1.2. In a two-player EFG of no chance and with multi-agent perfect recall,

if E is a decision node of MAX, then ΣP
−,E = ΣP

−,E′ for all children E′ of E; if E is a

decision node of MIN, then ΣP
+,E = ΣP

+,E′ for all children E′ of E.

Proof. We only prove the first statement since the second one is completely symmetric.

Let E be a decision node of MAX in a game of no chance and E′ be a child of E.

• Let B− ∈ ΣP
−,E′ . Since E′ is reachable, there is B+ ∈ ΣP

+ such that E′ is in the

playout under (B+, B−). Then necessarily E, the parent of E′, is also reached in the

playout under this profile, hence E is reachable under B− and B− ∈ Σ
P
−,E .

• Let B− ∈ Σ
P
−,E . Let B+ ∈ Σ

P
+ such that E is in the playout under (B+, B−). Consider

the strategy B′+ that differs from B+ only at MAX’s information set IS+ containing

E, at which B′+ chooses the unique action leading from E to E′. Then under

(B′+, B−), E is also reached since the path from the root to E intersects IS+ only

once due to MAX’s multi-agent perfect recall. Hence, by the definition of B′+, E
′

is reached under (B′+, B−), proving that B− ∈ Σ
P
−,E′ .

Therefore, ΣP
−,E = ΣP

−,E′ . □

B.1. PROOFS FOR CHAPTER 4 173

Lemma B.1.3. In a two-player EFG of no chance in which MAX has PR and MIN has

MA-PR, if an information set IS+ of MAX is reachable under a pure strategy B+ of MAX,

then every E ∈ IS+ is reachable under B+.

Proof. Let IS+ be an information set of MAX that is reachable under a pure strategy B+
of MAX. Let E ∈ IS+ be a vertex reachable under B+, and let E′ ∈ IS+ be an arbitrary

vertex in the same information set. We will show that E′ is also reachable under B+.

The conclusion trivially holds if E = E′. Hence, we suppose that E ≠ E′. Let B− be

a pure strategy of MIN such that E is in the playout under (B+, B−). We will show how

to modify B− to get another pure strategy of MIN B′− such that E′ is in the playout under

(B+, B
′
−).

First, let E∗ be the lowest common ancestor1 of E and E′. Then E∗ is necessarily

a decision node of MIN since otherwise there would be two distinct paths from E∗ to

MAX’s information set IS+ such that MAX chooses a different action at E∗ in these two

paths, contradicting MAX’s perfect recall. Clearly, E∗ is reached under (B+, B−) since

its descendant E is reached under this profile.

Consider the unique path from E∗ to E′. For each node E− of MIN in this path,

we modify the action assigned by B− at MIN’s information set containing E− to be the

unique action leading to E−’s successor in the path from E∗ to E′. Next, we prove that

this modification yields a new pure strategy B′− , and that B′− is what we are looking for.

Well-definedness of B′− To show that the aforementioned modifications to B− yields

a new pure strategy of MIN, it suffices to show that B− has been modified at most once

at each information set of MIN. This trivially follows from MIN’s multi-agent perfect

recall: the path from E∗ to E′ intersects each of MIN’s information set at most once.

Reachability of E′ under (B+, B
′
−) We now aim to prove that E′ is reached under

(B+, B
′
−). This follows from the two observations below:

• First, E∗ is still reached under (B+, B
′
−). The reason is that the path from the root

A to E∗ cannot intersect any information set intersected by the path from E∗ to E′

(except the one containing E∗), otherwise MIN does not have multi-agent perfect

recall. Hence, B′− chooses the same action as B− at any MIN’s ancestor node of

E∗, which means the playout under (B+, B
′
−) is exactly the same as the one under

(B+, B−) at least until E∗ is reached.

• Secondly, the path from E∗ to E′ is part of the playout under (B+, B
′
−). Suppose

by contradiction that this is not the case, then the path from E∗ to E′ diverges

from the path in the playout starting at E∗. Let E′′ be the lowest vertex shared by

these two paths. Then E′′ cannot be a decision node of MIN, since B′− is defined

explicitly such that at any node of MIN in the path from E∗ to E′, MIN takes the

same action under B′− as the action they would take in this path. Hence, E′′ is

a decision node of MAX. By MAX’s perfect recall, the path from E∗ to E must

intersect the information set of MAX containing E′′, as the path from E∗ to E′

does (since E and E′ belong to the same information set of MAX), and MAX

chooses the same action at this information set in these two paths, which is the

same as the action chosen by B+ at E′′. This means E′′, which is different from E′

by our assumption, cannot be the lowest common vertex between the path from

1In a tree, the lowest common ancestor of E and E′ is the unique vertex E∗ that is both a common ancestor

of E and E′, and the lowest one: for every common ancestor E′′ of E and E′, E′′ is also an ancestor of E∗.

174 APPENDIX B. PROOFS

E∗ to E′ and the playout from E∗ under (B+, B
′
−), contradicting the definition of E′′.

As a result, these two paths cannot diverge, and E′ is indeed in the playout under

(B+, B
′
−).

In conclusion, E′ is reached under (B+, B
′
−). Since E′ is an arbitrary vertex in IS+, this

means all vertices in IS+ are reachable under B+. □

Lemma B.1.4. In a two-player EFG of no chance in which MAX has PR and MIN has

MA-PR, if E and E′ belong to the same information set IS+ of MAX, then ΣP
+,E = ΣP

+,E′ .

Furthermore, for every action 0 ∈ �+, we have ΣP
+,0 (E)

= ΣP
+,0 (E′)

.2

Proof. This is a direct consequence of Lemma B.1.3.

Indeed, let E and E′ be two vertices in the same information set IS+ of MAX. Let

B+ ∈ Σ
P
+,E . Since E, and a fortiori IS+, is reachable under B+, and E′ is in IS+, we deduce

by Lemma B.1.3 that E′ is also reachable under B+, which means B+ ∈ ΣP
+,E′ . Hence,

ΣP
+,E ⊆ ΣP

+,E′ . By inverting the roles between E and E′ in the previous argument, we

also get ΣP
+,E′ ⊆ ΣP

+,E , thus establishing the first part of the statement.

For the second part, notice that ΣP
+,0 (E)

contains exactly those strategies in ΣP
+,E that

choose action 0 at IS+, and similarly for ΣP
+,0 (E′)

. Therefore, ΣP
+,0 (E)

is the same set as

ΣP
+,0 (E′)

since ΣP
+,E = ΣP

+,E′ . □

Armed with these lemmas regarding the properties of reachability in a game of no

chance, we can prove the lemmas used in the proof of Proposition 4.2.4 (page 36).

Lemma 4.2.6. For every vertex E ∈ + , it holds that

ev(E) ≥ max
B+∈Σ

P
+,E

min
B−∈ΣP

−

U+ (B+, B−). (4.3)

Proof. We prove this lemma by structural induction on the game tree. Let E ∈ + be an

arbitrary vertex in the tree.

If E is a leaf, then ev(E) = D+ (E). Let B+ ∈ Σ
P
+,E . Since E is reachable under B+, there

is B∗− ∈ ΣP
− such that the leaf E is reached in the playout under (B+, B

∗
−), which means

this profile yields a payoff of D+ (E) for MAX. Hence, minB−∈ΣP
−
U+ (B+, B−) ≤ D+ (E),

from which we deduce that (4.3) holds.

If E is a decision node of MIN, then ΣP
+,E′ = ΣP

+,E for all E′ ∈ C(E) by Lemma B.1.2.

By the induction hypothesis, we have

ev(E′) ≥ max
B+∈Σ

P
+,E′

min
B−∈ΣP

−

U+ (B+, B−) = max
B+∈Σ

P
+,E

min
B−∈ΣP

−

U+ (B+, B−),

which, combined with ev(E) = minE′∈C(E) ev(E′), yields (4.3).

Now consider the case in which E is a decision node of MAX. Let IS+ be MAX’s

information set that contains E. Then we have

ev(E) = max
0∈�+

min
E′∈IS+

ev(0(E′))

≥ max
0∈�+

min
E′∈IS+

max
B+∈Σ

P
+,0 (E′)

min
B−∈ΣP

−

U+ (B+, B−)

= max
0∈�+

max
B+∈Σ

P
+,0 (E)

min
B−∈ΣP

−

U+ (B+, B−)

= max
B+∈Σ

P
+,E

min
B−∈ΣP

−

U+ (B+, B−),

20 (E) and 0 (E′) denote the vertex reached by taking action 0 at E and at E′, respectively.

B.1. PROOFS FOR CHAPTER 4 175

where the first line is by the definition of ev(E), the second line is by the induction

hypothesis applied to ev(0(E′)), the third line is by Lemma B.1.4 (ΣP
+,0 (E′)

is the same

set when E′ ranges over IS+), the fourth line is by the fact that

Σ
P
+,E =

⋃
0∈�+

Σ
P
+,0 (E) ,

which holds in any game of no chance, even without multi-agent perfect recall. There-

fore, (4.3) holds for E. □

Lemma 4.2.7. Let B∗+ ∈ Σ
P
+,ev. For every vertex E reachable under B∗+, it holds that

ev(E) ≤ min
B−∈Σ

P
−,E

U+ (B
∗
+, B−). (4.5)

Proof. Let B∗+ ∈ Σ
P
+,ev. We prove this lemma by structural induction on the game tree.

Let E ∈ + be an arbitrary vertex that is reachable under B∗+.

If E is a leaf, then ev(E) = D+ (E). Let B− ∈ ΣP
−,E . Since the leaf E is reachable

both under B∗+ and under B− , by Lemma B.1.1 E is reached in the playout under (B∗+, B−).
Hence, the leaf E is the outcome under (B∗+, B−), which means U+ (B

∗
+, B−) = D+ (E).

Hence, minB−∈ΣP
−,E
U+ (B

∗
+, B−) = D+ (E) and (4.5) holds.

If E is a decision node of MIN, then every child E′ ∈ C(E) is also reachable under

B∗+ (which is shown in the proof of Lemma B.1.2). Hence, the induction applies to all

children of E, and we have

ev(E) = min
E′∈C(E)

ev(E′) ≤ min
E′∈C(E)

min
B−∈Σ

P
−,E′

U+ (B
∗
+, B−) = min

B−∈Σ
P
−,E

U+ (B
∗
+, B−),

where the first equality is by the definition of ev(E), the inequality is by the induction

hypothesis applied to ev(E′), and the second equality is by the fact that

Σ
P
−,E =

⋃
E′∈C(E)

Σ
P
−,E′ ,

which holds in any game of no chance, even without multi-agent perfect recall. There-

fore, (4.5) also holds for E.

Now consider the case in which E is a decision node of MAX. Let IS+ be MAX’s

information set that contains E. We denote by 0∗ ∈ �+ the action chosen by B∗+ at IS+.

By the definition of B∗+, 0
∗ is an action such that the maximum in (4.1) is achieved.

Hence, by the definition of ev(E),we have

ev(E) = max
0∈�+

min
E′∈IS+

ev(0(E′)) = min
E′∈IS+

ev(0∗ (E′)) ≤ ev(0∗(E)).

Since E is reachable under B∗+, which takes action 0∗ at IS+, 0
∗ (E) is also reachable

under B∗+. As a consequence, the induction applies to 0∗ (E), and we have

ev(E) ≤ ev(0∗ (E)) ≤ min
B−∈Σ

P
−,0∗ (E)

U+ (B
∗
+, B−) = min

B−∈Σ
P
−,E

U+ (B
∗
+, B−),

where the last equality is by Lemma B.1.2 (ΣP
−,0∗ (E)

= ΣP
−,E since E is a decision node

of MAX). Therefore, (4.5) holds for E. □

176 APPENDIX B. PROOFS

B.1.2 Compiling away non-Boolean payoffs

Some proofs in this dissertation involve EFGs of chance with non-Boolean but integer

payoffs. We will show that these payoffs can always be compiled into Boolean ones

with the help of chance nodes.

Lemma B.1.5. Let � be a two-player EFG of chance with only integer payoffs, and let

< be a rational number. Then there is a Boolean game �′ and a rational number <′,

constructible in time polynomial in the size of � and <, such that

• Every player has the same degree of imperfect information and the same set of

strategies in �′ as in �.

• With respect to every possible set of strategies Σ+ and Σ− ,3 the maxmin value for

MAX in �′ is <′ if and only if the maxmin value for MAX in � is <.

Proof. Recall that the maxmin value of a game with respect to Σ+ and Σ− is defined as

E+ (Σ+, Σ−) ≔ max
e+∈Σ+

min
e−∈Σ−

U+ (e+, e−).

Transforming the payoffs into rational numbers in the interval [0, 1] Every affine

transformation with positive scaling for all payoffs induces the same affine transforma-

tion on the maxmin value: for all 0 > 0 and 1 ∈ R,

max
e+∈Σ+

min
e−∈Σ−

(
0 · U+ (e+, e−) + 1

)
= 0 · E+ (Σ+, Σ−) + 1

holds for every possible set of strategies Σ+ and Σ− . We can exploit this property to

transform all integer payoffs of� into rational numbers in the interval [0, 1] with binary

expansion of polynomial length in the size of �.

Let = ≥ 0 be the largest payoff in � in terms of absolute value, which means

all payoffs in � are integers in [−=, =]. Let 3 ∈ N be the smallest integer such that

23 ≥ 2=. Notice that the value of 3 is linearly bounded by the size of �. By adding

= to all payoffs in �, we shift all payoffs into integers in [0, 2=]; then by dividing all

payoffs by 23 , we transform the payoffs into rational numbers in the interval [0, 1] with

a binary expansion over at most 3 digits. If the initial game has a maxmin value of <,

then the new game �′ has a maxmin value of <′ = (< + =)/23 .

Further transforming the payoffs into Boolean values Now, we show how to get

rid of the fractional payoffs in �′ with the help of chance nodes. Let G = 8/23 with

0 ≤ 8 ≤ 23 . Then a leaf with a payoff of G can be replaced by a chance tree)G of depth

3 that contains only chance nodes with uniform Bernoulli distribution and Boolean

payoffs in the following way: if the 3-digit binary representation of 8 reads 8182 · · · 83 ,

then the right node of the chance tree at depth 1 ≤ 9 ≤ 3 has value 8 9 , and the left node

at depth 3 has value 0. See Figure B.1 for an example with G = 5/8 (i.e. 3 = 3 and 8 = 5

with binary representation 101); all internal nodes are binary chance nodes that lead to

either child with probability 1/2.

By construction,)G for G = 8/23 is of size O(3), and the root of)G has an expected

value of G. Since there is neither decision node of MAX nor of MIN in)G , one can

replace a leaf with a payoff of G in �′ by)G without changing the expected payoff U

3By every possible set of strategies of MAX, we mean every subset of ΣP
+ ∪Σ

M
+ ∪Σ

B
+ (i.e. a set containing

arbitrary pure, mixed, and behaviour strategies); likewise for MIN.

B.1. PROOFS FOR CHAPTER 4 177

1

0

0 1

Figure B.1: A Boolean chance tree that represents the value 5/8.

under any strategy profile of the players, and a fortiori without changing the maxmin

value of �′.

To summarise, after obtaining�′ from� by an affine transformation on the payoffs,

we replace each leaf with a payoff of the form G = 8/23 , where 0 ≤ 8 ≤ 23 , by a Boolean

chance tree)G to obtain the game �′′. Then, the whole construction is polynomial in

� and <, and �′′ and <′ satisfy all the requirements. □

Remark. By an affine transformation, any game with only two possible values as

payoffs can be transformed into a Boolean game.

B.1.3 Tseitin transformation for compact Boolean games

Lemma 4.3.3. Let W = ⟨-, P,D, i+⟩ be a CBG. Then there exists a CBG W′ :=

⟨- ′, P′,D′, i′+⟩ with i′+ in CNF (respectively DNF, ROBDD), which has the same

maxmin value as W, and such that (i) W′ is of no chance if and only if W is of no

chance; (ii) MAX and MIN have the same degree of imperfect information in W′ as in

W. Furthermore, W′ can be constructed from W in polynomial time.

Proof. Let ∃H1 · · · ∃H? k+ (- ∪ {H1, . . . , H?}) be a formula which is satisfied by an

assignment to - if and only if i+ outputs 1 on this assignment, and in whichk+ is in CNF,

H1, . . . , H? are variables not in - and ? is polynomial in the size of i+. Such a formula

can be obtained from i+ in polynomial time using the Tseitin transformation (Tseitin,

1983).

To build a CBG W′ with a CNF goal from W, we define - ′ := - ∪ {H1, . . . , H=}
(with the ordering from - then H1, . . . , H=), P′ (G) := P(G) for G ∈ - and P′ (H8) := +
for 8 = 1, . . . , ?, D′ (G) := D(G) for G ∈ - and D′ (H8) := - ∪ {H1, . . . , H8−1} for

8 = 1, . . . , ?, and finally i′+ := k+. Observe that the construction is polynomial time,

does not introduce any chance variable, and preserves PI, PR, and MA-PR for both

players (since all information is revealed at the extra nodes). We now show that W′ has

the same maxmin value as W.

Given a strategy e+ for MAX in W, we simply define e ′+ for MAX in W′ to extend e+
by choosing H1, . . . , H? such that k+ is true at all leaves of W at which i+ outputs 1, and

arbitrary values at the other leaves. This can be done because in W′, all information is

revealed to MAX at the leaves of W. Moreover, e ′+ is pure if and only if so is e+. Finally,

by construction, this ensures that the utility of e ′+ in W′ is the same as the utility of e+
in W, against any strategy of MIN (observe that the set of strategies for MIN is the same

in W and W′), and hence that the maxmin value is preserved.

For DNF, we use the dual construction. Given a CBG with an arbitrary goal i+,

we first build a formula ∃H1 · · · ∃H?k+ (- ∪ {H1, . . . , H?}) as above, where k+ is in

CNF, but which is satisfied by an assignment to - if and only if i+ outputs 0 on this

assignment; such a formula can be obtained from ¬i+ using the Tseitin transformation.

178 APPENDIX B. PROOFS

Then we build a DNF j+ equivalent to ¬k+ using De Morgan’s laws. Finally, we define

W′ by - ′ ≔ -∪{H1, . . . , H?}, %
′ (G) ≔ %(G) for G ∈ - and %′ (H8) ≔ − for 8 = 1, . . . , ?,

�′ as in the construction for CNF, and finally i′+ ≔ j+. Then MAX has the same set of

strategies in W′ as in W. Now given a strategy e− for MIN in W, we define e ′− for MIN in

W′ to extend e− by choosing H1, . . . , H? such that j+ is false at all leaves of W at which

i+ outputs 0, and arbitrary values at other leaves; indeed, if and only if i+ outputs 0,

then by construction there exists H1, . . . , H? such that k+ is true, that is, such that j+
is false. It follows that MIN can force a loss for MAX in W′ exactly at those leaves in

which MAX loses in W, as desired.

Finally, for ROBDD, we use the construction given by Darwiche and Marquis

(2002, middle of page 258): for a given DNF i+, the construction introduces auxiliary

variables H1, . . . , H? not in - , and builds in polynomial time an ROBDD k+ over

- ∪ {H1, . . . , H?} such that ∃H1 · · · ∃H? k+ (- ∪ {H1, . . . , H?}) is equivalent to i+.

Hence, with the same reasoning as for CNF above, we conclude that a CBG with a DNF

goal can be reformulated in polynomial time into a CBG with an ROBDD goal. By the

previous paragraph, it follows that any CBG can be reformulated into a CBG with an

ROBDD goal. □

B.2. PROOFS FOR CHAPTER 6 179

B.2 Proofs for Chapter 6

Proposition 6.4.2. If ℎ is an admissible heuristic function for � and + , then for all

nodes = of � and all U, V ∈ + , we have

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ val(=)

)
. (6.9)

Proof. The proof is based on structural induction on =. We will only focus on OR-nodes

since the case for AND-nodes is completely symmetric. So let = be an OR-node and let

us consider the execution of the function call AlphaBeta(=, U, V).
If = is a leaf, then 5 (=, U, V) = ℎ(=, U, V) = val(=) since ℎ is admissible, hence

(6.9) holds trivially.

Now consider an internal OR-node =. Let 1 ≥ 1 be the number of children of =

and let =1, . . . , =1 be the children of =, listed in the same order as in Algorithm 4. By

definition, val(=) =
∨1

9=1 val(= 9). We assume by induction that all function calls on

the children of = satisfy (6.9).

Let : be the index of the loop during which a break happens (i.e. a cut is found). If

no break happens, then : is taken to be 1 + 1. For 0 ≤ 8 < : , let E8 and U8 denote the

value of E and U after the 8-th loop4. Then we have

E8 = � ∨

8∨
9=1

5 (= 9 , U 9 , V),

where � = ℎ(=, U, V). In particular, E0 = �. In addition, U0 = U, and U8 = U ∨ E8−1 for

1 < 8 < : .

To prove (6.9) for node =, we need the following lemma:

Lemma B.2.1. For every 0 ≤ 8 < : , we have

V ∧ (U ∨ E8) = V ∧
©«
U ∨ � ∨

8∨
9=1

val(= 9)
ª®¬
. (B.1)

Proof. We prove (B.1) by an induction on 8. When 8 = 0, both sides of (B.1) equal

V ∧ (U ∨ �), hence the equality holds.

For 8 ≥ 1, 5 (=8 , U8 , V) satisfies (6.9) by induction from the main proposition, which

means

V ∧
(
U8 ∨ 5 (=8 , U8 , V)

)
= V ∧

(
U8 ∨ val(=8)

)
. (B.2)

Since U8 = U ∨ E8−1, we have

V ∧ (U ∨ E8) = V ∧
(
U ∨ E8−1 ∨ 5 (=8 , U8 , V)

)
= V ∧

(
U ∨ E8−1 ∨ val(=8)

)
= V ∧

©«
U ∨ � ∨

8−1∨
9=1

val(= 9) ∨ val(=8)
ª®¬

= V ∧
©
«
U ∨ � ∨

8∨
9=1

val(= 9)
ª®
¬
,

where the second line is due to (B.2), the third line is due to distributivity and (B.1)

applied to E8−1. Therefore, (B.1) holds for all 0 ≤ 8 < : . □

4By after the 0th loop, we mean before the beginning of the first loop.

180 APPENDIX B. PROOFS

Now we can complete the proof of Proposition 6.4.2. For a non-leaf OR-node =

with 1 ≥ 1 children, two cases are possible:

• No break has taken place, which means : = 1 + 1 and the algorithm has looped

through all children of =. Then we have 5 (=, U, V) = E1. Plugging 8 = 1 into

(B.1), we get

V ∧ (U ∨ E1) = V ∧
©«
U ∨ � ∨

1∨
9=1

val(= 9)
ª®¬

= V ∧
(
U ∨ � ∨ val(=)

)
= V ∧

(
U ∨ val(=)

)
where the last equality is due to � = ℎ(=, U, V) ⪯ val(=) ∨U for an OR-node since

ℎ is admissible. Hence, (6.9) holds for node =.

• A break happens during the :-th loop, where 1 ≤ : ≤ 1, which means U: =

U∨ E:−1 ⪰ V (Line 10 in Algorithm 4) and 5 (=, U, V) = E:−1. On the right-hand

side of (6.9), we have

V ∧
(
U ∨ val(=)

)
= V ∧

(
U ∨ � ∨ val(=)

)
= V ∧

©«
U ∨ � ∨

1∨
9=1

val(= 9)
ª®¬

⪰ V ∧
©«
U ∨ � ∨

:−1∨
9=1

val(= 9)
ª®¬

= V ∧ (U ∨ E:−1),

where the first line is due to � ⪯ U ∨ val(=), the second one is by the definition

of val(=), and the last line is due to (B.1) applied to 8 = : − 1. Hence,

V ⪰ V ∧
(
U ∨ val(=)

)
⪰ V ∧ (U ∨ E:−1) = V,

which means all inequalities are equalities. Hence,

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ E:−1

)
= V ∧

(
U ∨ val(=)

)
.

which means, (6.9) holds for node =.

□

Proposition 6.4.6. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and + ,

then for all nodes = in � and all U, V ∈ + , we have

5 (=, U, V) ⪯ val(=) ⪯ 5 (=, U, V). (6.10)

Moreover, if there is an entry (2, 2) in the cache for = before the call, then 2 ⪯ 5 (=, U, V)

and 5 (=, U, V) ⪯ 2.

B.2. PROOFS FOR CHAPTER 6 181

Proof. 2 ⪯ 5 (=, U, V) and 5 (=, U, V) ⪯ 2 are direct consequences of Line 31 and

Line 32.

The proof of (6.10) is based on structural induction on =. We will only focus on

OR-nodes, since the case for AND-nodes is completely symmetric. So let = be an

OR-node and let us consider the execution of the function call AlphaBetaDuo(=, U, V).
If = is a leaf node, then whether or not there is an entry for = in the cache, on Line 6

we have 2 = 2 = val(=) since (ℎ, ℎ) is admissible and Cache is coherent. Hence, the

function returns immediately, so (6.10) holds and the cache remains coherent.

Otherwise, = is an internal OR-node. Again, whether or not there is an entry for =

in the cache, on Line 6 and forward we have 2 ⪯ val(=) ⪯ 2 since (ℎ, ℎ) is admissible

and Cache is coherent.

Let 1 ≥ 1 be the number of children of =. We assume by induction that all function

calls on the children of = satisfy (6.10) and maintain the coherence of the cache. Let :

be the index of the loop during which a break happens (if no break happens, then : is

taken to be 1 + 1). For 1 ≤ 8 ≤ : − 1, let E8 and E8 denote the values returned by the

function call on the child =8 during the 8-th loop. Then, by the induction assumption,

(6.10) yields E8 ⪯ val(=8) ⪯ E
8 for 1 ≤ 8 ≤ : − 1.

Hence, after the loop (i.e. just before Line 31),

E =

:−1∨
8=1

E8 ⪯

:−1∨
8=1

val(=8) ⪯

1∨
8=1

val(=8) = val(=).

As for E, we have two cases.

• No break happens, i.e. : = 1 + 1. Then

E =

1∨
8=1

E8 ⪰

1∨
8=1

val(=8) = val(=).

• Otherwise, a break happens, and E = 2 ⪰ val(=).

So in both cases, E ⪰ val(=).
Therefore, after the final updates on Line 31 and Line 32, we have E ⪯ val(=) ⪯ E.

As a result, the returned values of the function call AlphaBetaDuo(=, U, V) satisfy

(6.10), and the cache remains coherent after the function call. □

Proposition 6.4.7. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and + ,

then for all nodes = in � and all U, V ∈ + we have

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ 5 (=, U, V)

)
. (6.11)

Proof. Again, the proof is based on structural induction on =, and we will only focus

on OR-nodes since the case for AND-nodes is symmetric.

If = is a leaf node, then 5 (=, U, V) = 5 (=, U, V) = val(=) since (ℎ, ℎ) is admissible

and Cache is coherent. Hence, (6.11) holds.

Otherwise, let 1 ≥ 1 be the number of children of =. We assume by induction

that all function calls on the children of = satisfy (6.11). Let : be the index of the

loop during which a break happens (if no break happens, then : is taken to be 1 + 1).

For 1 ≤ 9 < : , let E 9 and E 9 denote the values returned by the function call on = 9
during the 9-th loop. For 0 ≤ 8 < : , let E

8
, E8 , and U8 denote the value of E, E, and

U after the 8-th loop. Then for 0 ≤ 8 < : , we have E
8
=

∨8
9=1 E

9 , E8 =
∨8

9=1 E
9 , and

182 APPENDIX B. PROOFS

U8 = U ∨ 2 ∨ E8 . In particular, E
0
= E0 = ⊥ and U0 = U ∨ 2. For 1 ≤ 9 < : , since the

function call on the child = 9 has the form AlphaBetaDuo(= 9 , U 9 , V ∧ 2), by (6.11), we

have V ∧ 2 ∧
(
U 9 ∨ E

9
)
= V ∧ 2 ∧

(
U 9 ∨ E

9
)
. Hence, by distributivity, we have

V ∧ 2 ∧

:−1∨
9=1

(
U 9 ∨ E

9
)
= V ∧ 2 ∧

:−1∨
9=1

(
U 9 ∨ E

9
)
. (B.3)

In the following, we distinguish two cases: no break happens (i.e. : = 1 + 1), or a

break happens (i.e. 1 ≤ : ≤ 1).

No break Then : = 1 + 1 and we have

5 (=, U, V) = 2 ∨ E
1
= 2 ∨

1∨
9=1

E 9 ,

5 (=, U, V) = 2 ∧ E1 = 2 ∧

1∨
9=1

E 9 .

First, recall the insertion identities of a distributive lattice: for all G, H, I ∈ + ,

G ∨ (H ∧ I) = (G ∨ H) ∧ (G ∨ I) = G ∨
(
H ∧ (G ∨ I)

)
, (A.1)

G ∧ (H ∨ I) = (G ∧ H) ∨ (G ∧ I) = G ∧
(
H ∨ (G ∧ I)

)
. (A.2)

Applying (A.1) and (A.2), one has

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

©«
U ∨

(
2 ∧

1∨
9=1

E 9

)ª®¬
= V ∧

©
«
U ∨

(
2 ∧

(
U ∨

1∨
9=1

E 9
))ª®

¬
= V ∧

©«
U ∨

(
V ∧ 2 ∧

(
U ∨

1∨
9=1

E 9
))ª®¬

.

We will first focus on the term V ∧ 2 ∧ (U ∨
∨1

9=1 E
9). Our goal is to massage it into a

form to which the induction assumption (B.3) can apply.

Recall that for 9 ≤ 1, U 9 = U0 ∨ E 9 = U0 ∨
∨ 9

;=1
E; . Hence,

1∨
9=1

(U 9 ∨ E
9) =

1∨
9=1

(
U0 ∨

9∨
;=1

E; ∨ E 9

)

= U0 ∨

1∨
9=1

9∨
;=1

E; ∨

1∨
9=1

E 9

= U0 ∨

1∨
9=1

E 9 ∨

1∨
9=1

E 9

= U0 ∨

1∨
9=1

E 9 ,

B.2. PROOFS FOR CHAPTER 6 183

where in the last equality we use the fact that by Proposition 6.4.6, we have E 9 ⪯ E 9 for

all 9 ≤ 1. Similarly, we have

1∨
9=1

(U 9 ∨ E
9) =

1∨
9=1

(
U0 ∨

9∨
;=1

E; ∨ E 9

)
= U0 ∨

1∨
9=1

E 9 .

Hence, by U0 = U ∨ 2 ⪰ U, the two previous equalities, distributivity, and the

induction assumption (B.3),

V ∧ 2 ∧

(
U ∨

1∨
9=1

E 9
)
⪯ V ∧ 2 ∧

(
U0 ∨

1∨
9=1

E 9
)

= V ∧ 2 ∧

1∨
9=1

(U 9 ∨ E
9)

= V ∧ 2 ∧

1∨
9=1

(U 9 ∨ E
9)

= V ∧ 2 ∧

(
U0 ∨

1∨
9=1

E 9
)

⪯ V ∧

(
U0 ∨

1∨
9=1

E 9
)
.

Therefore, applying again (A.1) and (A.2) yields

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

©«
U ∨

(
V ∧ 2 ∧

(
U ∨

1∨
9=1

E 9
))ª®¬

⪯ V ∧
©«
U ∨

(
V ∧

(
U0 ∨

1∨
9=1

E 9
))ª®¬

= V ∧
©
«
U ∨ U0 ∨

1∨
9=1

E 9
ª®¬

= V ∧
©«
U ∨ 2 ∨

1∨
9=1

E 9
ª®¬

= V ∧
(
U ∨ 5 (=, U, V)

)
.

Break Then 1 ≤ : ≤ 1, and we have 5 (=, U, V) = 2 and 5 (=, U, V) = 2 ∨ E
:−1

. Since

a break happens during the :-th loop, according to Line 16 in Algorithm 5 we have

V ∧ 2 ⪯ U:−1 = U ∨ 2 ∨ E
:−1

. Hence, by distributivity,

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧ (U ∨ 2)

= V ∧
(
U ∨ (V ∧ 2)

)
⪯ V ∧

(
U ∨ (U ∨ 2 ∨ E

:−1
)
)

= V ∧
(
U ∨ 5 (=, U, V)

)
.

184 APPENDIX B. PROOFS

Conclusion No matter a break happens or not, we have

V ∧
(
U ∨ 5 (=, U, V)

)
⪯ V ∧

(
U ∨ 5 (=, U, V)

)
.

On the other hand, by Proposition 6.4.6, 5 (=, U, V) ⪰ 5 (=, U, V), which means

V ∧
(
U ∨ 5 (=, U, V)

)
⪰ V ∧

(
U ∨ 5 (=, U, V)

)
.

As a consequence, (6.11) holds. □

In the following, we prove Proposition 6.5.2. Although Proposition 6.5.2 generalises

Proposition 6.4.2, we have still shown a proof of Proposition 6.4.2 before for two reasons.

• The proof of Proposition 6.4.2 is much easier to follow due to the lack of gamma;

it shows the core ideas behind the inductions used for the proof, which are reused

in the proof of Proposition 6.5.2;

• The presence of gamma breaks the symmetry between AND-nodes and OR-nodes

since the mask W′ is combined to the initial value � by a meet ∧. Hence, we need

to establish the induction for both OR-nodes and AND-nodes in the proof of

Proposition 6.5.2, unlike the case for other proofs in this chapter.

Proposition 6.5.2. If ℎ is an admissible heuristic function and 6 is an admissible

gamma update function for � and + , then for all nodes = of � and all U, V, W ∈ + , we

have

V ∧
(
U ∨ 5 (=, U, V, W)

)
= V ∧

(
U ∨

(
6(=, W) ∧ val(=)

))
, (6.12)

U ∨
(
V ∧ 5 (=, U, V, W)

)
= U ∨

(
V ∧

(
6(=, W) ∧ val(=)

))
. (6.13)

Proof. First, we show that in a distributive lattice, (6.12) and (6.13) are equivalent.

Indeed, recall the insertion identities of a distributive lattice (cf. Appendix A.3.2): for

all G, H, I ∈ + ,

G ∨ (H ∧ I) = G ∨
(
H ∧ (G ∨ I)

)
, (A.1)

G ∧ (H ∨ I) = G ∧
(
H ∨ (G ∧ I)

)
. (A.2)

If (6.12) holds, then for all U, V, W ∈ + and all nodes = of �,

U ∨
(
V ∧ 5 (=, U, V, W)

)
= U ∨

(
V ∧

(
U ∨ 5 (=, U, V, W)

))
(B.4)

= U ∨

(
V ∧

(
U ∨

(
6(=, W) ∧ val(=)

)))
(B.5)

= U ∨
(
V ∧

(
6(=, W) ∧ val(=)

))
, (B.6)

where we use the insertion identity (A.1) on the first and third line, and (6.12) on the

second line. Therefore, (6.12) implies (6.13). Symmetrically, one can show that (6.13)

also implies (6.12), so these two equalities are equivalent.

As a consequence, we only have to prove one of (6.12) and (6.13) holds. The proof

is based on structural induction. Let = be a node and W′ = 6(=, W). Let us consider the

execution of the function call AlphaBetaGamma(=, U, V, W).

B.2. PROOFS FOR CHAPTER 6 185

Base case Consider the case in which = is a leaf node. Then

5 (=, U, V, W) = W′ ∧ ℎ(=, U, V) = 6(=, W) ∧ val(=)

since ℎ is admissible. Hence, (6.12) and (6.13) hold trivially.

Now let = be an arbitrary internal node. We assume by induction that all function

calls on the children of = satisfy (6.12) (or equivalently (6.13)).

Induction for OR-nodes Consider the case in which = is an internal OR-node. Let

1 ≥ 1 be the number of children of = and let =1, . . . , =1 be the children of =, listed

in the same order as in Algorithm 6. By definition, val(=) =
∨1

9=1 val(= 9). Let : be

the index of the loop during which a break happens (i.e. a cut is found). If no break

happens, then : is taken to be 1 + 1. For 0 ≤ 8 < : , let E8 and U8 denote the value of E

and U after the 8-th loop5. Then we have

E8 = (W
′ ∧ �) ∨

8∨
9=1

5 (= 9 , U 9 , V, W
′),

where � = ℎ(=, U, V). In particular, E0 = W′ ∧ �. In addition, U0 = U, and U8 = U ∨ E8−1

for 1 < 8 < : .

To prove (6.12) for node =, we need the following lemma:

Lemma B.2.2. For every 0 ≤ 8 < : , we have

V ∧ (U ∨ E8) = V ∧

(
U ∨

(
W′ ∧

(
� ∨

8∨
9=1

val(= 9)
)))
. (B.7)

Proof. We prove (B.7) by an induction on 8. When 8 = 0, both sides of (B.7) equal

V ∧ (U ∨ (W′ ∧ �)), hence the equality holds.

For 8 ≥ 1, assume that E8−1 satisfies (B.7). By induction from the main proposition,

5 (=8 , U8 , V, W
′) satisfies (6.12), which means

V ∧
(
U8 ∨ 5 (=8 , U8 , V, W

′)
)
= V ∧

(
U8 ∨

(
6(=8 , W

′) ∧ val(=8)
))
. (B.8)

we first establish the following equality

6(=8 , W
′) ∧ val(=8) = W

′ ∧ val(=8) (B.9)

using the fact that the gamma update function 6 is admissible.

• If 6 is node-admissible, then 6(=8 , W
′) ⪰ val(=8) and W′ = 6(=, W) ⪰ val(=) ⪰

val(=8) since = is an OR-node. Hence,

6(=8 , W
′) ∧ val(=8) = val(=8) = W

′ ∧ val(=8).

• If 6 is path-admissible, then W′ ⪰ 6(=8 , W
′) ⪰ W′ ∧ val(=8). Hence,

W′ ∧ val(=8) ⪰ 6(=8 , W
′) ∧ val(=8) ⪰ W

′ ∧ val(=8) ∧ val(=8) = W
′ ∧ val(=8).

5By after the 0th loop, we mean before the beginning of the first loop.

186 APPENDIX B. PROOFS

In conclusion, (B.9) holds if 6 is admissible.

Recall that U8 = U ∨ E8−1, we have

V ∧ (U ∨ E8) = V ∧
(
U ∨ E8−1 ∨ 5 (=8 , U8 , V, W

′)
)

= V ∧
(
U ∨ E8−1 ∨

(
6(=8 , W

′) ∧ val(=8)
))

= V ∧
©«
U ∨

(
W′ ∧

(
� ∨

8−1∨
9=1

val(= 9)
))
∨

(
6(=8 , W

′) ∧ val(=8)
)ª®¬

= V ∧
©«
U ∨

(
W′ ∧

(
� ∨

8∨
9=1

val(= 9)
))ª®¬

,

where the second line is by distributivity and (B.8), the third line is by distributivity and

(B.7) applied to E8−1, and the last line is by distributivity and (B.9). Therefore, (B.7)

holds. □

Now we can prove (6.12) for an internal OR-node =. For = with 1 ≥ 1 children, two

cases are possible:

• No break has taken place, which means : = 1 + 1 and the algorithm has looped

through all children of =. Then we have 5 (=, U, V, W) = E1. Plugging 8 = 1 into

(B.7), we get

V ∧ (U ∨ E1) = V ∧
©«
U ∨

(
W′ ∧

(
� ∨

1∨
9=1

val(= 9)
))ª®¬

= V ∧

(
U ∨

(
W′ ∧

(
� ∨ val(=)

)))

= V ∧

(
U ∨

(
W′ ∧

(
U ∨ � ∨ val(=)

)))

= V ∧

(
U ∨

(
W′ ∧

(
U ∨ val(=)

)))

= V ∧
(
U ∨

(
W′ ∧ val(=)

))
where the third line and the last line are by insertion identity (A.1) and the fourth

line is by � = ℎ(=, U, V) ⪯ val(=) ∨ U for an OR-node since ℎ is admissible. As

a result, (6.12) holds for node =.

• A break happens during the :-th loop, where 1 ≤ : ≤ 1, which means U:−1 ∨
E:−1 = U ∨ E:−1 ⪰ V (Line 11 in Algorithm 6) and 5 (=, U, V, W) = E:−1. On the

left-hand side of (6.12), by (B.7) applied to 8 = : − 1, we have

V ∧ (U ∨ E:−1) = V ∧
©«
U ∨

(
W′ ∧

(
� ∨

:−1∨
9=1

val(= 9)
))ª®¬

⪯ V ∧
©«
U ∨

(
W′ ∧

(
� ∨

1∨
9=1

val(= 9)
))ª®¬

.

B.2. PROOFS FOR CHAPTER 6 187

Using insertion identity (A.1), we have

V ∧ (U ∨ E:−1) ⪯ V ∧

(
U ∨

(
W′ ∧

(
� ∨ val(=)

)))

= V ∧

(
U ∨

(
W′ ∧

(
U ∨ � ∨ val(=)

)))

= V ∧

(
U ∨

(
W′ ∧

(
U ∨ val(=)

)))

= V ∧
(
U ∨

(
W′ ∧ val(=)

))
,

where the third line is by � ⪯ val(=) ∨ U (since ℎ is admissible). Hence,

V = V ∧ (U ∨ E:−1) ⪯ V ∧
(
U ∨

(
W′ ∧ val(=)

))
⪯ V,

which means all inequalities are equalities. As a result, (6.12) holds for node =,

and in consequence (6.13) also holds for node =.

Induction for AND-nodes Consider the case in which = is an internal AND-node.

Let 1 ≥ 1 be the number of children of = and let =1, . . . , =1 be the children of =, listed

in the same order as in Algorithm 6. By definition, val(=) =
∧1

9=1 val(= 9). Let : be

the index of the loop during which a break happens (i.e. a cut is found). If no break

happens, then : is taken to be 1 + 1. For 0 ≤ 8 < : , let E8 and V8 denote the value of E

and V after the 8-th loop6. Then we have

E8 = W
′ ∧ � ∧

8∧
9=1

5 (= 9 , U, V 9 , W
′),

where W′ = 6(=, W). In particular, E0 = W′ ∧ �. In addition, V0 = V, and V8 = V ∧ E8−1

for 1 < 8 < : .

To prove (6.13) (which is equivalent to (6.12)) for node =, we need the following

lemma:

Lemma B.2.3. For every 0 ≤ 8 < : , we have

U ∨ (V ∧ E8) = U ∨
©«
V ∧ W′ ∧ � ∧

8∧
9=1

val(= 9)
ª®¬
. (B.10)

Proof. We prove (B.10) by an induction on 8. When 8 = 0, both sides of (B.10) equal

U ∨ (V ∧ W′ ∧ �), hence the equality holds.

For 8 ≥ 1, assume that E8−1 satisfies (B.10). By induction from the main proposition,

5 (=8 , U, V8 , W
′) satisfies (6.13), which means

U ∨
(
V8 ∧ 5 (=8 , U, V8 , W

′)
)
= U ∨

(
V8 ∧

(
6(=8 , W

′) ∧ val(=8)
))
. (B.11)

We first establish the following equality

W′ ∧ 6(=8 , W
′) ∧ val(=8) = W

′ ∧ val(=8) (B.12)

using the fact that the gamma update function 6 is admissible.

6By after the 0th loop, we mean before the beginning of the first loop.

188 APPENDIX B. PROOFS

• If 6 is node-admissible, then 6(=8 , W
′) ⪰ val(=8) hence (B.12) holds.

• If 6 is path-admissible, then 6(=8 , W
′) ⪰ W′ ∧ val(=8) hence (B.12) holds.

In conclusion, (B.12) holds if 6 is admissible.

Since V8 = V ∧ E8−1, we have

U ∨ (V ∧ E8) = U ∨
(
V ∧ E8−1 ∧ 5 (=8 , U, V8 , W

′)
)

= U ∨
(
V ∧ E8−1 ∧ 6(=8 , W

′) ∧ val(=8)
)

= U ∨
©«
V ∧ W′ ∧ � ∧

8−1∧
9=1

val(= 9) ∧ 6(=8 , W
′) ∧ val(=8)

ª®¬
= U ∨

©«
V ∧ W′ ∧ � ∧

8∧
9=1

val(= 9)
ª®¬
,

where the second line is by distributivity and (B.11), the third line is by distributivity

and (B.10) applied to E8−1, and the last line is by (B.12). Therefore, (B.10) holds. □

Now we can prove (6.13) for an internal AND-node =. For = with 1 ≥ 1 children,

two cases are possible:

• No break has taken place, which means : = 1 + 1 and the algorithm has looped

through all children of =. Then we have 5 (=, U, V, W) = E1. Plugging 8 = 1 into

(B.10), we get

U ∨ (V ∧ E1) = U ∨
©«
V ∧ W′ ∧ � ∧

1∧
9=1

val(= 9)
ª®¬

= U ∨
(
V ∧ W′ ∧ � ∧ val(=)

)
= U ∨

(
V ∧ W′ ∧ val(=)

)
where the third line is by � = ℎ(=, U, V) ⪰ val(=) ∧ V for an AND-node since ℎ

is admissible. As a result, (6.13) holds for node =.

• A break happens during the :-th loop, where 1 ≤ : ≤ 1, which means U ⪰
V:−1 ∧ E:−1 = V ∧ E:−1 (Line 11 in Algorithm 6) and 5 (=, U, V, W) = E:−1. On

the left-hand side of (6.13), we have

U ∨ (V ∧ E:−1) = U ∨
©«
V ∧ W′ ∧ � ∧

:−1∧
9=1

val(= 9)
ª®
¬

⪰ U ∨
©«
V ∧ W′ ∧ � ∧

1∧
9=1

val(= 9)
ª®¬

= U ∨
(
V ∧ W′ ∧ � ∧ val(=)

)
= U ∨

(
V ∧ W′ ∧ val(=)

)
,

where the first line is by (B.10) applied to 8 = : − 1, and the last line is by

� ⪰ val(=) ∧ V (since ℎ is admissible). Hence,

U = U ∨ (V ∧ E:−1) ⪰ U ∨
(
V ∧ W′ ∧ val(=)

)
⪰ U,

which means all inequalities are equalities. As a result, (6.13) holds for node =,

and in consequence (6.12) also holds for node =.

B.2. PROOFS FOR CHAPTER 6 189

Conclusion We have therefore established by induction that (6.12) and (6.13) hold

for all nodes = of �. □

Remark. The admissibility of 6 is only used to prove (B.9) and (B.12). More concretely,

what we need is that the following equations hold:

• if =′ is a child of an OR-node =, then

∀W ∈ +, 6(=′, 6(=, W)) ∧ val(=′) = 6(=, W) ∧ val(=′);

• if =′ is a child of an AND-node =, then

∀W ∈ +, 6(=, W) ∧ 6(=′, 6(=, W)) ∧ val(=′) = 6(=, W) ∧ val(=′).

Notice that the requirement on a child of an OR-node is stricter than on a child of

an AND-node. We have shown that both node-admissibility and path-admissibility

are sufficient to imply (B.9) and (B.12), but not necessary. This means one may

also define less strict notions of admissibility while maintaining the correctness of

Proposition 6.5.2, which would allow richer application of alpha-beta-gamma prunings.

190 APPENDIX B. PROOFS

B.3 Proofs for Chapter 7

Throughout this section, we write � ≔ ⟨), P, C, ®D, ®d⟩ for a CGII. Recall that the NBS at

node = about OM l− , written as NBS(=, l−) ∈ [0, 1]
C , is defined by NBS(A, l−) ≔ ®d

and for =′ ∈ C(=), if = ∈ #+ then NBS(=′, l−) ≔ NBS(=, l−), otherwise

NBS(=′, l−)8 ≔ NBS(=, l−)8 × l− (=, 8, =
′).

Payoff of any subtree under a profile Let B+ and B− be any pure strategy of MAX

and MIN, respectively. For every type 8 of MIN, let =8 be the leaf reached if MAX and

MIN play respectively B+ and B− , and the game begins at =. We define the vector

®D(=, B+, B−) ≔
(
®D(=1)1, . . . , ®D(=C)C

)
,

which is interpreted as the payoff vector if MAX and MIN play respectively B+ and

B− , and the game begins at =. In particular, U(B+, B−) = ®d · ®D(A, B+, B−). For mixed

strategies f+ and f− of MAX and MIN, respectively, ®D(=, f+, f−) is the expectation of

®D(=, B+, B−) when B+ and B− are drawn according to f+ and f− , respectively.

Notice that ®D(=, B+, B−) only depends on the choices of strategy B+ at nodes in the

subtree rooted at =. More precisely, if B+ and B′+ choose the same action at every node in

the subtree rooted at =, then ®D(=, B+, B−) = ®D(=, B
′
+, B−). In addition, for every MAX’s

node = and B− ∈ Σ
P
− , we have

{
®D(=, B+, B−)

�� B+ ∈ ΣP
+

}
=

⋃
=′∈C(=)

{
®D(=′, B+, B−)

�� B+ ∈ ΣP
+

}
. (B.13)

Proposition 7.3.2. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A, and let l− be an

OM. For ; ∈ L()), let eval(;) ≔ NBS(;, l−) · ®D(;). Then MiniMax(R, eval,max, +)
satisfies

E+ ≔ max
B+∈Σ

P
+

U(B+, l−) = max
f+∈Σ

M
+

U(f+, l−) = val(A),

and runs in polynomial time (more precisely, in O(C |) |) time).7

Proof. We only consider MAX’s pure strategies in the following. We will establish by

induction on the game tree that for every node =, its situational value val(=) satisfies

val(=) = max
B+∈Σ

P
+

NBS(=, l−) · ®D(=, B+, l−). (B.14)

First, consider a leaf =. Then

val(=) = eval(=) ≔ NBS(=, l−) · ®D(=).

Since = is a leaf, by definition of ®D(=, B+, l−), it trivially holds that ®D(=, B+, l−) = ®D(=)
for all B+ ∈ Σ

P
+. Hence, (B.14) holds for =.

Now consider an internal node =. If = is MAX’s decision node, then val(=) =
max=′∈C(=) val(=′). Applying the induction hypothesis to =′ yields

val(=) = max
=′∈C(=)

max
B+∈Σ

P
+

NBS(=′, l−) · ®D(=
′, B+, l−),

7The proof of this and other results in this chapter can be found in the appendix.

B.3. PROOFS FOR CHAPTER 7 191

from which we deduce that (B.14) holds for = using (B.13) and the fact that for all

=′ ∈ C(=), NBS(=′, l−) = NBS(=, l−).
If = is MIN’s decision node, then we have val(=) =

∑
=′∈C(=) val(=′). Applying the

induction hypothesis to =′ yields

val(=) =
∑

=′∈C(=)

max
B+∈Σ

P
+

NBS(=′, l−) · ®D(=
′, B+, l−).

Now, since each =′ is a different node in the game tree, MAX can apply any combination

of strategies in the subtree rooted at these nodes. Hence, the sum over =′ can be

exchanged with the maximum, which yields

val(=) = max
B+∈Σ

P
+

∑
=′∈C(=)

NBS(=′, l−) · ®D(=
′, B+, l−).

Finally, by definition of ®D and NBS, NBS(=, l−) · ®D(=, B+, l−) can be written as∑
=′∈C(=)

NBS(=′, l−) · ®D(=
′, B+, l−),

since = is MIN’s node, and MIN chooses =′ according to l− . Therefore, (B.14) holds

for =, which concludes the induction.

Applying (B.14) to the root, we have

val(A) = max
B+∈Σ

P
+

NBS(A, l−) · ®D(A, B+, l−)

= max
B+∈Σ

P
+

U(B+, l−),

where we use the fact that NBS(A, l−) = ®d andU(B+, l−) = ®d· ®D(A, B+, l−). Therefore,

the situational value of the root is the maxmin value. □

Proposition 7.3.3. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A , and letl1
− , . . . , l

<
− be

OMs distributed according to ®? = (?1, . . . , ?<). Let eval(;) ≔
∑<

9=1 ? 9 NBS(;, l 9
−) ·

®D(;) for ; ∈ L()). Then MiniMax(R, eval,max, +) satisfies E+ = val(A) and runs in

polynomial time (more precisely, in O(<C |) |) time).

Proof. Recall that the maxmin value under this setting is defined to be

E+ ≔ max
B+∈Σ

P
+

<∑
9=1

? 9U(B+, l
9
−).

Also, recall that MIN has perfect information in a vector game, and a fortiori perfect

recall. Hence, every MIN’s behaviour strategy has an equivalent mixed strategy, and

vice versa. Since
∑<

9=1 ? 9 = 1, if we interpret the OMs (l 9
−)1≤ 9≤< as mixed strategies

of MIN, then

l− ≔ ?1l
1
− + · · · + ?<l

<
−

is also a probability distribution over pure strategies of MIN and is thus a well-defined

mixed strategy of MIN.

MAX’s NBS corresponding to l− satisfies

NBS(=, l−) =

<∑
9=1

? 9 · NBS(=, l 9
−)

192 APPENDIX B. PROOFS

for every node =. This can be verified using the recursive definition of NBS by noticing

that a behaviour strategylb
− equivalent tol− satisfies for all nodes =, types 8, and nodes

=′ ∈ C(=):

lb
− (=, 8, =

′) =

∑<
9=1 ? 9

∏
(=1 ,=2) ∈Path(=′) l

9
− (=1, 8, =2)∑<

9=1 ? 9

∏
(=1 ,=2) ∈Path(=) l

9
− (=1, 8, =2)

where Path(=) (respectively Path(=′)) denotes the set of all edges (=1, =2) in the path

from A to = (respectively =′).

Hence, the function eval reads

eval(=) ≔

<∑
9=1

? 9 NBS(=, l 9
−) · ®D(=) = NBS(=, l−) · ®D(=)

for all leaf nodes =. Then by Proposition 7.3.2, val(A) is the maxmin value against the

OM l− , which reads

val(A) = max
B+∈Σ

P
+

U(B+, l−) = max
B+∈Σ

P
+

<∑
9=1

? 9U(B+, l
9
−),

where the second equality is due to the linearity of U. Hence, val(A) is exactly the

maxmin value against the probabilistic OMs. □

Proposition 7.3.4. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A , and let l1
− , . . . , l

<
−

be OMs with a lexicographic interpretation. Let eval(;) ≔ NBSM(;) × ®D(;) ∈ R<

for ; ∈ L()). Then MiniMax(R<, eval, lexmax, +<) satisfies −→E+ = val(A) and runs in

polynomial time (more precisely, in O(<C |) |) time).

Proof. In the following, we write a vector (01, . . . , 0<) of length < as (0 9)1≤ 9≤< to

save space. For example, the definition of eval reads

eval(;) ≔
(
NBS(;, l 9

−) · ®D(;)
)
1≤ 9≤<.

Recall that the maxmin value under this setting is defined to be

−→E+ ≔ lexmax
B+∈Σ

P
+

(
U(B+, l

9
−)

)
1≤ 9≤< ∈ R

<.

The proof of Proposition 7.3.4 is nearly identical to the one of Proposition 7.3.2. The

only difference is that situational values are now real vectors of length < instead of real

numbers. We will establish by induction on the game tree that for every node =, its

situational value val(=) ∈ R< satisfies

val(=) = lexmax
B+∈Σ

P
+

(
NBS(=, l 9

−) · ®D(=, B+, l
9
−)

)
1≤ 9≤<. (B.15)

First, consider a leaf =. Then

val(=) = eval(=) ≔
(
NBS(=, l 9

−) · ®D(=)
)
1≤ 9≤<.

Since = is a leaf, it trivially holds that ®D(=, B+, l
9
−) = ®D(=) for all B+ ∈ Σ

P
+ and 1 ≤ 9 ≤ <.

Hence, (B.15) holds for =.

B.3. PROOFS FOR CHAPTER 7 193

Now consider an internal node =. If = is MAX’s decision node, then val(=) =
lexmax=′∈C(=) val(=′). Applying the induction hypothesis to =′, val(=) reads

lexmax
=′∈C(=)

lexmax
B+∈Σ

P
+

(
NBS(=′, l 9

−) · ®D(=
′, B+, l

9
−)

)
1≤ 9≤<,

from which we deduce that (B.15) holds for = using (B.13) and the fact that for all

=′ ∈ C(=) and 1 ≤ 9 ≤ <, NBS(=′, l 9
−) = NBS(=, l 9

−).

If = is MIN’s decision node, then we have val(=) =
∑

=′∈C(=) val(=′). Applying the

induction hypothesis to =′, val(=) reads∑
=′∈C(=)

lexmax
B+∈Σ

P
+

(
NBS(=′, l 9

−) · ®D(=
′, B+, l

9
−)

)
1≤ 9≤<.

Now, since each =′ is a different node in the game tree, MAX can apply any combination

of strategies in the subtree rooted at these nodes. Hence, the sum over =′ can be

exchanged with the maximum, which means val(=) reads

lexmax
B+∈Σ

P
+

∑
=′∈C(=)

(
NBS(=′, l 9

−) · ®D(=
′, B+, l

9
−)

)
1≤ 9≤<.

Finally, for all 1 ≤ 9 ≤ <, NBS(=, l 9
−) · ®D(=, B+, l

9
−) can be written as∑

=′∈C(=)

NBS(=′, l 9
−) · ®D(=

′, B+, l
9
−),

since = is MIN’s node, and MIN under the 9-th OM chooses =′ according to l 9
− .

Therefore, (B.15) holds for =, which concludes the induction.

Applying (B.15) to the root, we have

val(A) = lexmax
B+∈Σ

P
+

(
NBS(A, l 9

−) · ®D(A, B+, l
9
−)

)
1≤ 9≤<.

Using the fact that for all 1 ≤ 9 ≤ <, NBS(A, l 9
−) = ®d andU(B+, l

9
−) = ®d · ®D(A, B+, l

9
−),

we get val(A) = −→E+. □

Proposition 7.3.5. Let ⟨), P, C, ®D, ®d⟩ be a game with root A, and letl1
− , . . . , l

<
− be OMs

with a nondeterministic interpretation. For ; ∈ L()), let eval(;) ≔ {NBSM(;) × ®D(;)}.
Then MiniMax(P<∞ (R

<), eval,∪, ⊕<) satisfies

E+ ≔ max
B+∈Σ

P
+

min
1≤ 9≤<

U(B+, l
9
−) = max

®E∈val(A)
min

1≤ 9≤<
E 9 .

Proof. We will establish by induction on the game tree that for every node =, its

situational value val(=) satisfies

val(=) =
{(

NBS(=, l 9
−) · ®D(=, B+, l

9
−)

)
1≤ 9≤<

�� B+ ∈ ΣP
+

}
. (B.16)

In other words, MiniMax(P<∞(R
<), eval,∪, ⊕<) implicitly and recursively enumerates

all pure strategies of MAX.

First, consider a leaf =. Then

val(=) = eval(=) ≔
{(

NBS(=, l 9
−) · ®D(=)

)
1≤ 9≤<

}
.

194 APPENDIX B. PROOFS

Since = is a leaf, it trivially holds that ®D(=, B+, l
9
−) = ®D(=) for all B+ ∈ Σ

P
+ and 1 ≤ 9 ≤ <.

Hence, (B.16) holds for =.

Now consider an internal node =. If = is MAX’s decision node, then val(=) =
∪=′∈C(=)val(=′). Applying the induction hypothesis to =′, val(=) reads⋃

=′∈C(=)

{(
NBS(=′, l 9

−) · ®D(=
′, B+, l

9
−)

)
1≤ 9≤<

�� B+ ∈ ΣP
+

}
,

from which we deduce that (B.16) holds for = using (B.13) and the fact that for all

=′ ∈ C(=) and 1 ≤ 9 ≤ <, NBS(=′, l 9
−) = NBS(=, l 9

−).
If = is MIN’s decision node, then we have val(=) = ⊕<

=′∈C(=)
val(=′), where for

5 , 6 ∈ P<∞ (R
<), ⊕< is defined by

5 ⊕< 6 ≔ {(E 9 + E
′
9)1≤ 9≤< | ®E ∈ 5 , ®E

′ ∈ 6} ⊆ R<.

Applying the induction hypothesis to =′, val(=) reads⊕
=′∈C(=)

<{(
NBS(=′, l 9

−) · ®D(=
′, B+, l

9
−)

)
1≤ 9≤<

�� B+ ∈ ΣP
+

}
.

For all 1 ≤ 9 ≤ <, NBS(=, l 9
−) · ®D(=, B+, l

9
−) can be written as∑

=′∈C(=)

NBS(=′, l 9
−) · ®D(=

′, B+, l
9
−),

since = is MIN’s node, and MIN under the 9-th OM chooses =′ according to l 9
− .

Therefore, (B.16) holds for =, which concludes the induction.

Applying (B.16) to the root, we have

val(A) =
{(

NBS(A, l 9
−) · ®D(A, B+, l

9
−)

)
1≤ 9≤<

�� B+ ∈ ΣP
+

}
.

Using the fact that for all 1 ≤ 9 ≤ <, NBS(A, l 9
−) = ®d andU(B+, l

9
−) = ®d · ®D(A, B+, l

9
−),

we get

val(A) =
{(
U(B+, l

1
−), . . . ,U(B+, l

<
−)

) �� B+ ∈ ΣP
+

}
.

Therefore,

E+ ≔ max
B+∈Σ

P
+

min
1≤ 9≤<

U(B+, l
9
−) = max

®E∈val(A)
min

1≤ 9≤<
E 9 .

□

Proposition 7.3.6. Let ⟨), P, C, ®D, ®d⟩ be a vector game with root A, l− be an OM, and

?∞ ∈ [0, 1] a probability that MIN does not follow l− . For all ; ∈ L()), let

eval(;) ≔ {⟨NBS(;, l−) · ®D(;), ®D(;)⟩} ∈ P<∞ (R × R
C).

Then MiniMax(P<∞ (R × R
C), eval,∪, ⊕1,C) satisfies

E+ = max
⟨B, ®E⟩∈val(A)

(
(1 − ?∞)B + ?∞ (®@ · ®E)

)
.

Proof. Recall that the maxmin value under this setting is defined to be

E+ ≔ max
B+∈Σ

P
+

(
(1 − ?∞)U(B+, l−) + ?

∞ min
B−∈ΣP

−

U(B+, B−)
)
.

B.3. PROOFS FOR CHAPTER 7 195

We will establish by induction on the game tree that for every node =, its situational

value val(=) satisfies

val(=) =
{〈

NBS(=, l−) · ®D(=, B+, l−), min
B−∈ΣP

−

®D(=, B+, B−)
〉 �� B+ ∈ ΣP

+

}
, (B.17)

where min is the component-wise minimum of vectors of length <. In other words,

the situational value of = stores, for each pure strategy of MAX, the payoff of this pure

strategy under the subtree rooted at = against the OM l− , and its worst payoff against

each type of MIN.

First, consider a leaf =. Then

val(=) = eval(=) ≔ {⟨NBS(=, l−) · ®D(=), ®D(=)⟩}.

Since = is a leaf, it trivially holds that ®D(=, B+, B−) = ®D(=) for all B+ ∈ ΣP
+ and all

B− ∈ Σ
P
− . In addition, ®D(=, B+, l−) = ®D(=), Hence, (B.17) holds for =.

Now consider an internal node =. If = is MAX’s decision node, then val(=) =
∪=′∈C(=)val(=′). Applying the induction hypothesis to =′ yields

val(=) =
⋃

=′∈C(=)

{〈
NBS(=′, l−) · ®D(=

′, B+, l−), min
B−∈ΣP

−

®D(=′, B+, B−)
〉 �� B+ ∈ ΣP

+

}
,

from which we deduce that (B.17) holds for = using (B.13) and the fact that for all

=′ ∈ C(=), NBS(=′, l−) = NBS(=, l−).
If = is MIN’s decision node, then we have val(=) = ⊕1,C

=′∈C(=)
val(=′), where for

5 , 6 ∈ P<∞ (R × R
C), we define 5 ⊕1,C 6 ⊆ R × RC to be the set

{⟨B + B′, (min(E8 , E
′
8))1≤8≤C ⟩ | ⟨B, ®E⟩ ∈ 5 , ⟨B

′, ®E ′⟩ ∈ 6}.

Applying the induction hypothesis to =′ yields

val(=) =
⊕

=′∈C(=)

1,C {〈
NBS(=′, l−) · ®D(=

′, B+, l−), min
B−∈ΣP

−

®D(=′, B+, B−)
〉 �� B+ ∈ ΣP

+

}
.

Observe that∑
=′∈C(=)

NBS(=′, l−) · ®D(=
′, B+, l−) = NBS(=, l−) · ®D(=, B+, l−)

and

min
B−∈ΣP

−

®D(=, B+, B−) = min
=′∈C(=)

min
B−∈ΣP

−

®D(=′, B+, B−)

since MIN can choose a successor =′ of = according to their type. Hence, (B.17) holds

for =, which concludes the induction.

Applying (B.17) to the root, and using NBS(A, l−) = ®d and U(B+, l−) = ®d ·
®D(A, B+, l−), we get

val(A) =
{〈
U(B+, l−), min

B−∈ΣP
−

®D(B+, B−)
〉 �� B+ ∈ ΣP

+

}
.

Therefore,

max
⟨B, ®E⟩∈val(A)

(
(1 − ?∞)B + ?∞ (®d · ®E)

)
= E+.

□

196 APPENDIX B. PROOFS

Bibliography

Albert, M. H. and Nowakowski, R. J., editors (2009). Games of No Chance 3, volume 56

of Mathematical Sciences Research Institute Publications. Cambridge University

Press. p10

Albert, M. H., Nowakowski, R. J., and Wolfe, D. (2019). Lessons in Play: An Intro-

duction to Combinatorial Game Theory. CRC Press, 2nd edition. p9

Albrecht, S. V. and Stone, P. (2018). Autonomous agents modelling other agents: A

comprehensive survey and open problems. Artif. Intell., 258:66–95. p13

Allis, L. V., van der Meulen, M., and van den Herik, H. J. (1994). Proof-number search.

Artif. Intell., 66(1):91–124. p11

Apt, K. R. and Grädel, E., editors (2011). Lectures in Game Theory for Computer

Scientists. Cambridge University Press. p6

Arora, S. and Barak, B. (2009). Computational Complexity: A Modern Approach.

Cambridge University Press. p10, p162

Atzmon, D., Stern, R., and Saffidine, A. (2018). Bounded suboptimal game tree search.

In Bulitko, V. and Storandt, S., editors, Proceedings of the Eleventh International

Symposium on Combinatorial Search, SOCS 2018, Stockholm, Sweden - 14-15 July

2018, pages 10–18. AAAI Press. p119

Babai, L., Fortnow, L., and Lund, C. (1991). Non-deterministic exponential time has

two-prover interactive protocols. Comput. Complex., 1:3–40. p30

Balcázar, J. L., Lozano, A., and Torán, J. (1992). The Complexity of Algorithmic

Problems on Succinct Instances, pages 351–377. Springer US, Boston, MA. p50

Ballard, B. W. (1983). The *-minimax search procedure for trees containing chance

nodes. Artif. Intell., 21(3):327–350. p39

Basilico, N., Celli, A., Nittis, G. D., and Gatti, N. (2017). Team-maxmin equilibrium:

Efficiency bounds and algorithms. In Singh, S. and Markovitch, S., editors, Proceed-

ings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,

2017, San Francisco, California, USA, pages 356–362. AAAI Press. p9, p28, p29

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2001). Winning Ways for Your

Mathematical Plays, Volume 1. CRC Press, 2nd edition. p9

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2003a). Winning Ways for Your

Mathematical Plays, Volume 2. CRC Press, 2nd edition. p9

197

198 BIBLIOGRAPHY

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2003b). Winning Ways for Your

Mathematical Plays, Volume 3. CRC Press, 2nd edition. p9

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2004). Winning Ways for Your

Mathematical Plays, Volume 4. CRC Press, 2nd edition. p9

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The complexity

of decentralized control of markov decision processes. Math. Oper. Res., 27(4):819–

840. p11, p30

Bethe, P. M. (2021). Advances in computer bridge: techniques for a partial-information,

communication-based game. PhD thesis, New York University, USA. p12

Bonanno, G. (2018). Game Theory. Kindle Direct Publishing. p7, p12

Bonnet, E., Jamain, F., and Saffidine, A. (2013). On the complexity of trick-taking

card games. In Rossi, F., editor, IJCAI 2013, Proceedings of the 23rd International

Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages

482–488. IJCAI/AAAI. p11

Bonnet, É. and Saffidine, A. (2014). On the complexity of general game playing. In

Cazenave, T., Winands, M. H. M., and Björnsson, Y., editors, Computer Games -

Third Workshop on Computer Games, CGW 2014, Held in Conjunction with the

21st European Conference on Artificial Intelligence, ECAI 2014, Prague, Czech

Republic, August 18, 2014, Revised Selected Papers, volume 504 of Communications

in Computer and Information Science, pages 90–104. Springer. p49

Bosanský, B., Kiekintveld, C., Lisý, V., and Pechoucek, M. (2014). An exact double-

oracle algorithm for zero-sum extensive-form games with imperfect information. J.

Artif. Intell. Res., 51:829–866. p10

Bourke, T. (2005). Countdown to Winning Bridge. Master Point Press. p168

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision pro-

cesses. In Shoham, Y., editor, Proceedings of the Sixth Conference on Theoretical

Aspects of Rationality and Knowledge, De Zeeuwse Stromen, The Netherlands, March

17-20 1996, pages 195–210. Morgan Kaufmann. p6

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. (2017). Heads-up limit

hold’em poker is solved. Commun. ACM, 60(11):81–88. p12

Brafman, R. I., Shani, G., and Zilberstein, S. (2013). Qualitative planning under partial

observability in multi-agent domains. In desJardins, M. and Littman, M. L., editors,

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July

14-18, 2013, Bellevue, Washington, USA. AAAI Press. p6, p11, p30, p108

Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia, A. D., editors (2016).

Handbook of Computational Social Choice. Cambridge University Press. p7

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity Analysis of

Production and Allocation, 13(1):374–376. p153

Brown, N. and Sandholm, T. (2017). Libratus: The superhuman AI for no-limit poker.

In Sierra, C., editor, Proceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,

pages 5226–5228. ijcai.org. p12

BIBLIOGRAPHY 199

Brown, N. and Sandholm, T. (2019). Superhuman ai for multiplayer poker. Science,

365(6456):885–890. p12

Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Liebana, D. P., Samothrakis, S., and Colton, S. (2012). A survey of

monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games, 4(1):1–43.

p11

Buro, M., Long, J. R., Furtak, T., and Sturtevant, N. R. (2009). Improving state

evaluation, inference, and search in trick-based card games. In Boutilier, C., editor,

IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial

Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 1407–1413. p12,

p112

Camerer, C. F., Ho, T.-H., and Chong, J.-K. (2004). A cognitive hierarchy model of

games. The Quarterly Journal of Economics, 119(3):861–898. p8, p13, p143, p152

Campbell, M., Jr., A. J. H., and Hsu, F. (2002). Deep blue. Artif. Intell., 134(1-2):57–83.

p12

Cazenave, T., Legras, S., and Ventos, V. (2021). Optimizing U`. In 2021 IEEE

Conference on Games (CoG), Copenhagen, Denmark, August 17-20, 2021, pages

1–8. IEEE. p12

Cazenave, T. and Ventos, V. (2020). The U` search algorithm for the game of bridge.

In Proc. Monte Carlo Search International Workshop, pages 1–16. Springer. p12,

p113

Celli, A. and Gatti, N. (2018). Computational results for extensive-form adversarial team

games. In McIlraith, S. A. and Weinberger, K. Q., editors, Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative

Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on

Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,

USA, February 2-7, 2018, pages 965–972. AAAI Press. p9, p20, p28, p29

Chatterjee, K., Doyen, L., and Henzinger, T. A. (2013). A survey of partial-observation

stochastic parity games. Formal Methods Syst. Des., 43(2):268–284. p11

Chatterjee, K. and Henzinger, T. A. (2012). A survey of stochastic l-regular games. J.

Comput. Syst. Sci., 78(2):394–413. p11

Cloud, A., Wang, A., and Kerr, W. (2023). Anticipatory fictitious play. In Proceedings

of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI

2023, 19th-25th August 2023, Macao, SAR, China, pages 73–81. ijcai.org. p153

Conitzer, V. and Sandholm, T. (2008). New complexity results about nash equilibria.

Games Econ. Behav., 63(2):621–641. p10

Conway, J. H. (2000). On Numbers and Games. A K Peters/CRC Press, 2nd edition.

p9

Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree

search. In van den Herik, H. J., Ciancarini, P., and Donkers, H. H. L. M., editors,

Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May

29-31, 2006. Revised Papers, volume 4630 of Lecture Notes in Computer Science,

pages 72–83. Springer. p11

200 BIBLIOGRAPHY

Cowling, P. I., Powley, E. J., and Whitehouse, D. (2012). Information set monte carlo

tree search. IEEE Trans. Comput. Intell. AI Games, 4(2):120–143. p12

Darwiche, A. and Marquis, P. (2002). A knowledge compilation map. J. Artif. Intell.

Res., 17:229–264. p46, p178

Dasgupta, P., Chakrabarti, P. P., and Sarkar, S. C. D. (1996). Searching game trees

under a partial order. Artif. Intell., 82(1-2):237–257. p13, p108, p115

Dasgupta, P., Chakrabarti, P. P., and Sarkar, S. C. D. (1999). Multiobjective heuristic

search: an introduction to intelligent search methods for multicriteria optimization.

Computational intelligence. Vieweg. p13

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The complexity of

computing a nash equilibrium. SIAM J. Comput., 39(1):195–259. p10

Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order. Cambridge

University Press, 2nd edition. p165

de Weerd, H., Verbrugge, R., and Verheij, B. (2013). How much does it help to

know what she knows you know? an agent-based simulation study. Artif. Intell.,

199-200:67–92. p13

Dhami, S. (2019). The Foundations of Behavioral Economic Analysis Volume IV:

Behavioral Game Theory. Oxford University Press, London, England. p8, p13,

p115, p141, p143, p152

Doshi, P., Gmytrasiewicz, P. J., and Durfee, E. H. (2020). Recursively modeling other

agents for decision making: A research perspective. Artif. Intell., 279. p13, p152

Doyen, L. and Raskin, J. (2011). Games with imperfect information: theory and

algorithms. In Apt, K. R. and Grädel, E., editors, Lectures in Game Theory for

Computer Scientists, pages 185–212. Cambridge University Press. p111

Edelkamp, S. (2020). Representing and reducing uncertainty for enumerating the belief

space to improve endgame play in skat. In Proc. 24th European Conference on

Artificial Intelligence (ECAI 2020), pages 395–402. IOS Press. p12, p112

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning About

Knowledge. MIT Press. p67

Faliszewski, P., Rothe, I., and Rothe, J. (2016). Noncooperative game theory. In

Rothe, J., editor, Economics and Computation, An Introduction to Algorithmic Game

Theory, Computational Social Choice, and Fair Division, Springer texts in business

and economics, pages 41–134. Springer. p7, p66

Farina, G., Celli, A., Gatti, N., and Sandholm, T. (2018). Ex ante coordination and

collusion in zero-sum multi-player extensive-form games. In Bengio, S., Wallach,

H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors,

Advances in Neural Information Processing Systems 31: Annual Conference on

Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,

Montréal, Canada, pages 9661–9671. p9

BIBLIOGRAPHY 201

Farina, G., Celli, A., Gatti, N., and Sandholm, T. (2021). Connecting optimal ex-

ante collusion in teams to extensive-form correlation: Faster algorithms and positive

complexity results. In Meila, M. and Zhang, T., editors, Proceedings of the 38th In-

ternational Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual

Event, volume 139 of Proceedings of Machine Learning Research, pages 3164–3173.

PMLR. p9

Frank, I. and Basin, D. A. (1998). Search in games with incomplete information: A

case study using bridge card play. Artif. Intell., 100(1-2):87–123. p12, p90, p95,

p96, p122, p139

Frank, I. and Basin, D. A. (2001). A theoretical and empirical investigation of search

in imperfect information games. Theor. Comput. Sci., 252(1-2):217–256. p12, p41,

p76, p77, p93

Fédération Française de Bridge (2013). Le bridge français: Tome 1. Éditions Pole.

p167

Geffner, H. and Bonet, B. (2013). A Concise Introduction to Models and Methods

for Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine

Learning. Morgan & Claypool Publishers. p6

Genesereth, M. R. and Thielscher, M. (2014). General Game Playing. Synthesis

Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-

lishers. p48

Ghallab, M., Nau, D. S., and Traverso, P. (2004). Automated planning - theory and

practice. Elsevier. p6

Ghallab, M., Nau, D. S., and Traverso, P. (2016). Automated Planning and Acting.

Cambridge University Press. p6

Gilboa, I. and Zemel, E. (1989). Nash and correlated equilibria: Some complexity

considerations. Games and Economic Behavior, 1(1):80–93. p10

Gimbert, H., Paul, S., and Srivathsan, B. (2020). A bridge between polynomial opti-

mization and games with imperfect recall. In Seghrouchni, A. E. F., Sukthankar, G.,

An, B., and Yorke-Smith, N., editors, Proceedings of the 19th International Confer-

ence on Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland, New

Zealand, May 9-13, 2020, pages 456–464. International Foundation for Autonomous

Agents and Multiagent Systems. p11, p33, p64

Ginsberg, M. and Jaffray, A. (2002). Alpha-beta pruning under partial orders. In

Nowakowski, R., editor, More Games of No Chance, number 42 in Mathematical

Sciences Research Institute Publications, pages 37–48. Cambridge University Press.

p112, p113, p115, p116, p117

Ginsberg, M. L. (2001). GIB: imperfect information in a computationally challenging

game. J. Artif. Intell. Res., 14:303–358. p12, p93, p97, p109, p113, p114

Gmytrasiewicz, P. J. and Doshi, P. (2005). A framework for sequential planning in

multi-agent settings. J. Artif. Intell. Res., 24:49–79. p13

202 BIBLIOGRAPHY

Goldsmith, J. and Mundhenk, M. (2007). Competition adds complexity. In Platt, J. C.,

Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information

Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural

Information Processing Systems, Vancouver, British Columbia, Canada, December

3-6, 2007, pages 561–568. Curran Associates, Inc. p11, p41, p51

Grädel, E. (1990). Domino games and complexity. SIAM J. Comput., 19(5):787–804.

p41

Halpern, J. Y. (2011). Beyond nash equilibrium: solution concepts for the 21st century.

In Apt, K. R. and Grädel, E., editors, Lectures in Game Theory for Computer

Scientists, pages 264–290. Cambridge University Press. p9

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming

for partially observable stochastic games. In McGuinness, D. L. and Ferguson, G.,

editors, Proceedings of the Nineteenth National Conference on Artificial Intelligence,

Sixteenth Conference on Innovative Applications of Artificial Intelligence, July 25-29,

2004, San Jose, California, USA, pages 709–715. AAAI Press / The MIT Press. p6

Haworth, G. and Hernandez, N. (2021). The 20th top chess engine championship,

TCEC20. ICGA Journal, 43(1):62–73. p12, p113

Hearn, R. A. and Demaine, E. D. (2009). Games, Puzzles and Computation. A K

Peters. p11

Huth, M. and Ryan, M. D. (2004). Logic in computer science: modelling and reasoning

about systems (2. ed.). Cambridge University Press. p67

Iida, H., Uiterwijk, J. W. H. M., van den Herik, H. J., and Herschberg, I. S. (1993).

Potential applications of opponent-model search, part 1: The domain of applicability.

J. Int. Comput. Games Assoc., 16(4):201–208. p13, p144, p145, p147, p152

Iida, H., Uiterwijk, J. W. H. M., van den Herik, H. J., and Herschberg, I. S. (1994).

Potential applications of opponent-model search, part 2: Risks and strategies. J. Int.

Comput. Games Assoc., 17(1):10–14. p13, p144

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in

partially observable stochastic domains. Artif. Intell., 101(1-2):99–134. p6

Karpin, F. L. (1977). Psychological Strategy in Contract Bridge: The Techniques of

Deception and Harassment in Bidding and Play. Dover Publications. p169

Khemani, D., Singh, S., and AC, I. (2018). Contract bridge: Multi-agent adversarial

planning in an uncertain environment. In Poster Collection of the Sixth Annual

Conference on Advances in Cognitive Systems. ACS (Online available at www. cogsys.

org/papers/ACSvol6/posters/Khemani. pdf). p12

Kissmann, P. and Edelkamp, S. (2009). Solving fully-observable non-deterministic

planning problems via translation into a general game. In Mertsching, B., Hund, M.,

and Zaheer Aziz, M., editors, Proc. 32nd Annual German Conference on Artificial

Intelligence (KI 2009), pages 1–8. Springer. p112

Knuth, D. E. (2011). Art of Computer Programming, Volume 4A, Combinatorial

Algorithms, Part 1. Addison-Wesley. p164

BIBLIOGRAPHY 203

Knuth, D. E. and Moore, R. W. (1975). An analysis of alpha-beta pruning. Artif. Intell.,

6(4):293–326. p11, p39, p113, p116, p117

Kochenderfer, M. J. (2015). Decision Making Under Uncertainty: Theory and Appli-

cation. MIT Press. p5

Kochenderfer, M. J., Wheeler, T. A., and Wray, K. H. (2022). Algorithms for Decision

Making. The MIT Press. p5, p7

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In Fürnkranz,

J., Scheffer, T., and Spiliopoulou, M., editors, Machine Learning: ECML 2006, 17th

European Conference on Machine Learning, Berlin, Germany, September 18-22,

2006, Proceedings, volume 4212 of Lecture Notes in Computer Science, pages 282–

293. Springer. p11

Koller, D. and Megiddo, N. (1992). The complexity of two-person zero-sum games in

extensive form. Games and Economic Behavior, 4(4):528–552. p10, p11, p26, p33,

p36, p37, p39, p40, p41, p55, p56, p63, p64, p145, p146, p149, p150

Koller, D., Megiddo, N., and von Stengel, B. (1996). Efficient computation of equilibria

for extensive two-person games. Games and Economic Behavior, 14(2):247–259.

p10, p145

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.

Artif. Intell., 27(1):97–109. p11

Kovarı́k, V., Schmid, M., Burch, N., Bowling, M., and Lisý, V. (2022). Rethinking

formal models of partially observable multiagent decision making. Artif. Intell.,

303:103645. p10

Kozen, D. (2006). Theory of Computation. Texts in Computer Science. Springer. p10

Kuhn, H. W. (1953). Extensive games and the problem of information. In Contributions

to the Theory of Games (AM-28), Volume II, pages 193–216. Princeton University

Press, Princeton. p27, p28

Kupferschmid, S. and Helmert, M. (2006). A skat player based on monte-carlo simu-

lation. In Proc. 5th International Conference on Computers and Games (CG 2006),

pages 135–147. Springer. p12, p112

Larsson, U., editor (2019). Games of No Chance 5, volume 70 of Mathematical Sciences

Research Institute Publications. Cambridge University Press. p10

Levy, D. N. (1989). The million pound bridge program. Heuristic Programming in

Artificial Intelligence: The First Computer Olympiad, pages 95–103. p12, p112

Li, J., Zanuttini, B., Cazenave, T., and Ventos, V. (2022). Generalisation of alpha-

beta search for AND-OR graphs with partially ordered values. In Raedt, L. D.,

editor, Proc. Thirty-First International Joint Conference on Artificial Intelligence

(IJCAI 2022), pages 4769–4775. ijcai.org. p94, p112

Li, J., Zanuttini, B., and Ventos, V. (2024). Opponent-model search in games with

incomplete information. In Dy, J. and Natarajan, S., editors, Proc. Thirty-Eighth

AAAI Conference on Artificial Intelligence (AAAI-24). AAAI Press. To appear. p144

204 BIBLIOGRAPHY

Loddo, J. and Saiu, L. (2010). How to correctly prune tropical trees. In Autexier, S.,

Calmet, J., Delahaye, D., Ion, P. D. F., Rideau, L., Rioboo, R., and Sexton, A. P.,

editors, Proc. 10th International Conference on Intelligent Computer Mathematics,

volume 6167 of Lecture Notes in Computer Science, pages 101–115. Springer. p115

Long, J. R., Sturtevant, N. R., Buro, M., and Furtak, T. (2010). Understanding the

success of perfect information monte carlo sampling in game tree search. In Fox,

M. and Poole, D., editors, Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, pages

134–140. AAAI Press. p12

Madani, O., Hanks, S., and Condon, A. (2003). On the undecidability of probabilistic

planning and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34.

p11

Marsland, T. A. (1986). A review of game-tree pruning. J. Int. Comput. Games Assoc.,

9(1):3–19. p11, p112, p113, p114, p116, p117, p119

Maschler, M., Solan, E., and Zamir, S. (2020). Game Theory. Cambridge University

Press, 2nd edition. p7, p8, p9, p12, p15, p21, p25, p27, p66, p67, p68

McMahan, H. B., Gordon, G. J., and Blum, A. (2003). Planning in the presence of

cost functions controlled by an adversary. In Fawcett, T. and Mishra, N., editors,

Machine Learning, Proceedings of the Twentieth International Conference (ICML

2003), August 21-24, 2003, Washington, DC, USA, pages 536–543. AAAI Press.

p10, p53, p148, p152, p153

Moore, C. and Mertens, S. (2011). The Nature of Computation. Oxford University

Press, London, England. p10

Moulin, H. (1985). Choice functions over a finite set: a summary. Social Choice and

Welfare, 2(2):147–160. p102, p103, p104

Mundhenk, M., Goldsmith, J., Lusena, C., and Allender, E. (2000). Complexity of

finite-horizon markov decision process problems. J. ACM, 47(4):681–720. p11

Nagel, R. (1995). Unraveling in guessing games: An experimental study. The American

Economic Review, 85(5):1313–1326. p8

Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2):286–295. p8

Nash, J. F. (1950). Equilibrium points in ¡i¿n¡/i¿-person games. Proceedings of the

National Academy of Sciences, 36(1):48–49. p8

Nashed, S. B. and Zilberstein, S. (2022). A survey of opponent modeling in adversarial

domains. J. Artif. Intell. Res., 73:277–327. p13

Nasu, Y. (2018). Efficiently updatable neural-network-based evaluation functions for

computer shogi. The 28th World Computer Shogi Championship Appeal Document.

p113

Nisan, N., Roughgarden, T., Tardos, É., and Vazirani, V. V., editors (2007). Algorithmic

Game Theory. Cambridge University Press. p7

BIBLIOGRAPHY 205

Niveau, A. and Zanuttini, B. (2016). Efficient representations for the modal logic

S5. In Kambhampati, S., editor, Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July

2016, pages 1223–1229. IJCAI/AAAI Press. p138

Nowakowski, R. J., editor (1996). Games of No Chance, volume 29 of Mathematical

Sciences Research Institute Publications. Cambridge University Press. p10

Nowakowski, R. J., editor (2002). More Games of No Chance, volume 42 of Mathe-

matical Sciences Research Institute Publications. Cambridge University Press. p10

Nowakowski, R. J., editor (2015). Games of No Chance 4, volume 63 of Mathematical

Sciences Research Institute Publications. Cambridge University Press. p10

Oliehoek, F. A. and Amato, C. (2016). A Concise Introduction to Decentralized

POMDPs. Springer Briefs in Intelligent Systems. Springer. p6

Palacios, H. and Geffner, H. (2009). Compiling uncertainty away in conformant plan-

ning problems with bounded width. J. Artif. Intell. Res., 35:623–675. p73

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley. p164

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection.

Econometrica, 52(4):1029–1050. p8

Pearl, J. (1982). The solution for the branching factor of the alpha-beta pruning algo-

rithm and its optimality. Commun. ACM, 25(8):559–564. p11, p113

Perea, A. (2010). Backward induction versus forward induction reasoning. Games,

1(3):168–188. p8

Perea, A. (2012). Epistemic Game Theory: Reasoning and Choice. Cambridge Uni-

versity Press. p7, p8, p13, p142, p143

Perea, A. (2024). From Decision Theory to Game Theory: Reasoning about Decisions

of Others. Cambridge University Press. To be published. p7

Perifel, S. (2014). Complexité algorithmique. Ellipses. p10

Pérolat, J., Vylder, B. D., Hennes, D., Tarassov, E., Strub, F., de Boer, V., Muller, P.,

Connor, J. T., Burch, N., Anthony, T. W., McAleer, S., Elie, R., Cen, S. H., Wang, Z.,

Gruslys, A., Malysheva, A., Khan, M., Ozair, S., Timbers, F., Pohlen, T., Eccles, T.,

Rowland, M., Lanctot, M., Lespiau, J., Piot, B., Omidshafiei, S., Lockhart, E., Sifre,

L., Beauguerlange, N., Munos, R., Silver, D., Singh, S., Hassabis, D., and Tuyls, K.

(2022). Mastering the game of stratego with model-free multiagent reinforcement

learning. CoRR, abs/2206.15378. p12

Peterson, G., Reif, J., and Azhar, S. (2001). Lower bounds for multiplayer noncoopera-

tive games of incomplete information. Computers & Mathematics with Applications,

41(7):957–992. p11, p34, p45, p50

Piccione, M. and Rubinstein, A. (1997). On the interpretation of decision problems

with imperfect recall. Games and Economic Behavior, 20(1):3–24. p33

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley Series in Probability and Statistics. Wiley. p6

206 BIBLIOGRAPHY

Rebstock, D., Solinas, C., Buro, M., and Sturtevant, N. R. (2019). Policy based

inference in trick-taking card games. In IEEE Conference on Games, CoG 2019,

London, United Kingdom, August 20-23, 2019, pages 1–8. IEEE. p12, p13, p112

Rintanen, J. (2004). Complexity of planning with partial observability. In Zilberstein,

S., Koehler, J., and Koenig, S., editors, Proceedings of the Fourteenth International

Conference on Automated Planning and Scheduling (ICAPS 2004), June 3-7 2004,

Whistler, British Columbia, Canada, pages 345–354. AAAI. p6, p11, p108

Roijers, D. M. and Whiteson, S. (2017). Multi-Objective Decision Making. Synthe-

sis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool

Publishers. p13

Roughgarden, T. and Iwama, K. (2017). Twenty lectures on algorithmic game theory.

Bull. EATCS, 122. p7

Rousset, M.-C. (2022). Nook, robot de bridge. https://www.lemonde.fr/blog/

binaire/2022/06/28/nook-robot-de-bridge/. Accessed: 2023-10-23. p12

Russell, S. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson,

4th edition. p5, p11

Schaefer, M. and Umans, C. (2002). Completeness in the polynomial-time hierarchy:

A compendium. SIGACT news, 33(3):32–49. p42

Schaeffer, J. (2008). One Jump Ahead: Computer Perfection at Checkers. Springer

New York. p12

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., and

Sutphen, S. (2007). Checkers is solved. Science, 317(5844):1518–1522. p12, p112

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,

Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T. P., and Silver, D.

(2020). Mastering atari, go, chess and shogi by planning with a learned model. Nat.,

588(7839):604–609. p12

Schwarzentruber, F. (2019). The complexity of tiling problems. CoRR, abs/1907.00102.

p42

Seuken, S. and Zilberstein, S. (2008). Formal models and algorithms for decentralized

decision making under uncertainty. Auton. Agents Multi Agent Syst., 17(2):190–250.

p6

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Syst. Tech. J.,

28(4):656–715. p78

Shoham, Y. and Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press. p7, p8

Siegel, A. N. (2013). Combinatorial game theory. American Mathematical Society.

p10

https://www.lemonde.fr/blog/binaire/2022/06/28/nook-robot-de-bridge/
https://www.lemonde.fr/blog/binaire/2022/06/28/nook-robot-de-bridge/

BIBLIOGRAPHY 207

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T. P., Leach, M.,

Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of go

with deep neural networks and tree search. Nat., 529(7587):484–489. p12

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,

T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L., van den

Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of go

without human knowledge. Nat., 550(7676):354–359. p12

Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning, 3rd

edition. p10

Stahl, D. O. and Wilson, P. W. (1995). On players’ models of other players: Theory and

experimental evidence. Games and Economic Behavior, 10(1):218–254. p8, p152

Stockman, G. C. (1979). A minimax algorithm better than alpha-beta? Artif. Intell.,

12(2):179–196. p11

Stockmeyer, L. J. and Meyer, A. R. (1973). Word problems requiring exponential time:

Preliminary report. In Aho, A. V., Borodin, A., Constable, R. L., Floyd, R. W.,

Harrison, M. A., Karp, R. M., and Strong, H. R., editors, Proceedings of the 5th

Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,

Texas, USA, pages 1–9. ACM. p50

Sturtevant, N. R. and Bowling, M. H. (2006). Robust game play against unknown

opponents. In Nakashima, H., Wellman, M. P., Weiss, G., and Stone, P., editors,

5th International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2006), Hakodate, Japan, May 8-12, 2006, pages 713–719. ACM. p144

Sturtevant, N. R. and White, A. M. (2006). Feature construction for reinforcement

learning in hearts. In Proc. 5th International Conference on Computers and Games

(CG 2006), pages 122–134. Springer. p12, p113

Sturtevant, N. R., Zinkevich, M., and Bowling, M. H. (2006). Prob-maxn: Playing

n-player games with opponent models. In Proceedings, The Twenty-First National

Conference on Artificial Intelligence and the Eighteenth Innovative Applications of

Artificial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA,

pages 1057–1063. AAAI Press. p13, p144, p153

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning. Adaptive Computation

and Machine Learning series. MIT Press, Cambridge, MA, 2nd edition. p6, p11

Swiechowski, M., Godlewski, K., Sawicki, B., and Mandziuk, J. (2023). Monte carlo

tree search: a review of recent modifications and applications. Artif. Intell. Rev.,

56(3):2497–2562. p11

Tewolde, E., Oesterheld, C., Conitzer, V., and Goldberg, P. W. (2023). The compu-

tational complexity of single-player imperfect-recall games. In Proceedings of the

Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023,

19th-25th August 2023, Macao, SAR, China, pages 2878–2887. ijcai.org. p33

208 BIBLIOGRAPHY

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. In

Siekmann, J. and Wrightson, G., editors, Automation of reasoning: 2: Classical

papers on computational logic 1967–1970, pages 466–483. Springer. p177

Umans, C. (1999). Hardness of approximating Σ
?

2
minimization problems. In 40th

Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,

1999, New York, NY, USA, pages 465–474. IEEE Computer Society. p81

van Damme, E. (1991). Stability and Perfection of Nash Equilibria. Springer Berlin

Heidelberg. p8

van den Herik, H., Uiterwijk, J. W., and van Rijswijck, J. (2002). Games solved: Now

and in the future. Artif. Intell., 134(1-2):277–311. p112

van Ditmarsch, H., Halpern, J. Y., van der Hoek, W., and Kooi, B., editors (2015).

Handbook of epistemic logic. College Publications. p67

van Emde Boas, P. (1997). The convenience of tilings. In Complexity, Logic, and

Recursion Theory, pages 331–363. CRC Press. p42

von Neumann, J. and Morgenstern, O. (1994). Theory of Games and Economic Behav-

ior. Princeton University Press. p7

von Stengel, B. (1996). Efficient computation of behavior strategies. Games and

Economic Behavior, 14(2):220–246. p10, p145

von Stengel, B. and Koller, D. (1997). Team-maxmin equilibria. Games and Economic

Behavior, 21(1):309–321. p9, p28

Wright, J. R. and Leyton-Brown, K. (2019). Level-0 models for predicting human

behavior in games. J. Artif. Intell. Res., 64:357–383. p13, p152

You, Y., Thomas, V., Colas, F., Alami, R., and Buffet, O. (2023). Robust robot planning

for human-robot collaboration. In IEEE International Conference on Robotics and

Automation, ICRA 2023, London, UK, May 29 - June 2, 2023, pages 9793–9799.

IEEE. p13

Zermelo, E. (1913). Über eine anwendung der mengenlehre auf die theorie des

schachspiels. In Proceedings of the fifth international congress of mathematicians,

volume 2, pages 501–504. Cambridge University Press Cambridge. p11

Zhang, B. H., Farina, G., and Sandholm, T. (2023). Team belief DAG: generalizing

the sequence form to team games for fast computation of correlated team max-

min equilibria via regret minimization. In Krause, A., Brunskill, E., Cho, K.,

Engelhardt, B., Sabato, S., and Scarlett, J., editors, International Conference on

Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume

202 of Proceedings of Machine Learning Research, pages 40996–41018. PMLR. p9,

p11, p63, p64

Zhang, B. H. and Sandholm, T. (2022). Team correlated equilibria in zero-sum

extensive-form games via tree decompositions. In Thirty-Sixth AAAI Conference

on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Appli-

cations of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational

Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March

1, 2022, pages 5252–5259. AAAI Press. p9

BIBLIOGRAPHY 209

Zhang, Y., An, B., and Cerný, J. (2021). Computing ex ante coordinated team-maxmin

equilibria in zero-sum multiplayer extensive-form games. In Thirty-Fifth AAAI Con-

ference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative

Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Edu-

cational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,

2021, pages 5813–5821. AAAI Press. p9

Zinkevich, M., Johanson, M., Bowling, M. H., and Piccione, C. (2007). Regret min-

imization in games with incomplete information. In Platt, J. C., Koller, D., Singer,

Y., and Roweis, S. T., editors, Advances in Neural Information Processing Systems

20, Proceedings of the Twenty-First Annual Conference on Neural Information Pro-

cessing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007, pages

1729–1736. Curran Associates, Inc. p12

Abstracts

Jeux à information incomplète : complexité, algorithmique, raisonnement

Dans cette thèse, on étudie les jeux à information incomplète. On commence par

établir un paysage complet de la complexité du calcul des stratégies pures optimales

pour différentes sous-catégories de jeux, lorsque les jeux sont explicitement donnés

en entrée. On étudie ensuite la complexité lorsque les jeux sont représentés de façon

compacte (par leurs règles de jeu, par exemple). Pour ce faire, on conçoit deux

formalismes pour ces représentations compactes. Dans la suite, on se consacre aux

jeux à information incomplète, en proposant d’abord un nouveau formalisme, nommé

jeu combinatoire à information incomplète, qui regroupe les jeux sans hasard (sauf

un tirage aléatoire initial) et avec uniquement des actions publiques. Ce nouveau

formalisme capture la notion de l’information et de la connaissance des joueurs mieux

que la forme extensive. Puis, on étudie des algorithmes et leurs optimisations pour

résoudre les jeux combinatoires à information incomplète ; certains algorithmes que

l’on propose sont applicables au-delà de ces jeux. Dans la dernière partie, on présente

un travail en cours, qui consiste à modéliser les raisonnements récursifs et différents

types de connaissances sur le comportement des adversaires dans les jeux à information

incomplète.

Mots-clefs : jeu sous forme extensive, jeu à information incomplète, maxmin,

recherche arborescente, modèle d’opposant

Games with incomplete information: complexity, algorithmics, reasoning

In this dissertation, we study games with incomplete information. We begin by estab-

lishing a complete landscape of the complexity of computing optimal pure strategies

for different subclasses of games, when games are given explicitly as input. We then

study the complexity when games are represented compactly (e.g. by their game rules).

For this, we design two formalisms for such compact representations. Then we con-

centrate on games with incomplete information, by first proposing a new formalism

called combinatorial game with incomplete information, which encompasses games of

no chance (apart from a random initial drawing) and with only public actions. This new

formalism captures the notion of information and knowledge of the players in a game

better than the extensive form. Next, we study algorithms and their optimisations for

solving combinatorial games with incomplete information; some of these algorithms

are applicable beyond these games. In the last part, we present a work in progress that

concerns the modelling of recursive reasoning and different types of knowledge about

the behaviour of the opponents in games with incomplete information.

Keywords: extensive-form game, game with incomplete information, maxmin,

game tree search, opponent model

	I Introduction and background
	Introduction
	Related work
	Decision-making
	Game theory
	Solution concepts for games
	Team games
	Games with public actions

	Computational complexity
	Complexity of games
	Complexity of other models for decision-making

	Search algorithms for games
	Games with incomplete information
	Games with public actions

	Opponent models

	Background on game theory
	Games and strategies
	Extensive-form games
	Strategies and outcomes
	Games of chance
	The solution concept of maxmin

	Information in EFGs
	Perfect recall
	Multi-agent perfect recall

	II Contributions
	Complexity of pure maxmin in extensive-form games
	Introduction
	Complexity of EFGs
	Summary of results
	EFG of no chance
	EFGs of chance

	Complexity of compactly represented games
	Compact representations of games
	Summary of results
	Membership results
	Hardness results

	Complexity against opponent models
	Summary of results
	Complexity of best responses in EFGs
	Complexity of EFGs of no chance with multiple OMs
	Complexity of EFGs of chance with multiple OMs

	Other variants of Pure Maxmin
	Conclusion

	Combinatorial game with incomplete information
	Introduction
	Games with incomplete information
	Incomplete information in games
	Games with incomplete information and public actions
	Motivation for CGIIs

	Complexity of CGIIs
	Summary of results
	Hardness for two-player CGIIs
	Multi-agent coordination in CGIIs
	Hardness for two-team CGIIs
	Final remarks

	Search algorithm for vector games
	The best-defence model
	Vector games and vectorisation
	Generic minimax algorithms
	Strategy fusion and non-locality
	Ginsberg's algorithm
	Analysis of Ginsberg's algorithm

	Conclusion

	Optimisations for Ginsberg's algorithm
	Introduction
	Choice functions as reduction functions
	Properties of a choice function
	Reduction functions
	Partial reduction
	Conclusion

	Strategy prunings
	Elimination of dominated strategies in Ginsberg's algorithm
	Non-locality and its implications on sound strategy prunings
	Maxmin lower bound pruning

	Alpha-beta prunings under partial order
	Related work
	AND-OR graph evaluation under partial order
	Alpha-beta pruning
	Alpha-beta search with heuristic function
	Alpha-beta duo algorithm
	Experiments
	Conclusion

	Other types of game tree pruning
	Alpha-beta-gamma search algorithm
	Prunings with winning supports under complete information
	Information-revealing CGIIs
	Prunings with path winning supports

	Conclusion

	Opponent models and recursive reasoning
	Introduction
	Beyond the best-defence model
	Opponent-model search in vector games
	Introduction
	Problem setting
	Opponent-model search
	Opponent models with uncertainty

	Recursive opponent modelling
	Conclusion

	Conclusion and perspectives
	Appendices
	Reminders of definitions
	Graph theory
	Complexity classes
	Sets
	Family algebra
	Lattices

	Rules of Bridge
	Bridge deals

	Proofs
	Proofs for Chapter 4
	Lemmas for Proposition 4.2.4
	Compiling away non-Boolean payoffs
	Tseitin transformation for compact Boolean games

	Proofs for Chapter 6
	Proofs for Chapter 7

	Bibliography

